본 논문에서는 가우시안 혼합모형을 이용한 새로운 칼라 영상의 분할 알고리즘을 제안한다. 기존의 EM 알고리즘의 문제점인 국부적 최대값의 문제를 해결하기 위하여 최대 엔트로피의 원리를 이용하는 결정적 어닐링 EM 알고리즘을 소개하였고, 여러 색상들로 구성된 영상에 대하여 가우시안 혼합모형을 가정하였으며, 결정적 어닐링 EM 알고리즘을 사용하여 이들의 모수를 추정하는 방법을 알아보았다. 또한 혼합모형에 성분의 수를 자동으로 결정할 수 있는 방법을 제시하였으며 선택된 최적의 혼합모형을 사용하여 각 화소에 대한 사후확률을 계산하고 이들의 최대값을 이용하여 영상분할을 실시하였다. 결정적 어닐링 EM 알고리즘이 기존의 EM 알고리즘보다 혼합모형의 모수를 더 정확하게 추정한다는 것과 혼합모형의 성분의 수를 결정하는 제안된 방법의 성능을 실험결과를 통하여 고찰하였고, 또한 두 가지 실제 영상을 통하여 제안된 알고리즘이 기존의 알고리즘 보다 영상을 더 효율적으로 분할 할 수 있음을 보였다.
본 논문에서는 비정상 잡음환경에서 음질향상을 위한 비선형 함수와 사전 음성부재 확률을 이용한 최소 통계치(MS) 방법의 잡음전력편의 보상 방법을 제안한다. 비정상 잡음환경에서 잡음전력추정을 위해 최소 통계치 방법이 잘 알려져 있지만, 예측된 잡음전력 추정 값은 실제 잡음 전력 값보다 하향 편의 되는 특성을 나타낸다. 제안한 방법은 비선형 함수를 적용한 적응보상파라미터와 사전 음성부재 확률 값을 혼용하는 잡음전력편의 보상방법이다. 특히, 적응보상 파라미터는 사후 SNR을 이용한 비 선형함수를 적용하여 잡음수준의 증감에 따라 파라미터 값을 조절한다. 또한, 사전 음성부재확률 값이 1로 수렴할 경우, 적응보상파라미터 값은 각 주파수별로 최대치까지 증가하지만, 확률 값이 0에 가까워지면 반대의 특성을 나타낸다. 제안한 알고리즘의 잡음전력추정 및 음질향상의 성능평가를 위해 다양한 종류의 잡음과 비정상적인 극심한 잡음환경을 설정하여 실험하고, 음질향상을 위해 주파수 차감법과 결합하였다. 알고리즘의 성능은 다양한 잡음환경의 신호 대 잡음비 (SNR)와 Itakura-Saito 음질왜곡 평가법을 이용하여 기존 최소 통계치 (MS)방법에 비해 우수한 결과를 나타냈다.
본 논문은 분노, 행복, 평정, 슬픔, 놀람 등과 같은 인간의 감정상태를 인식하는 새로운 접근에 대해 설명한다. 이러한 시도는 이산길이를 포함하는 연속 은닉 마르코프 모델(HMM)을 사용함으로써 이루어진다. 이를 위해, 우선 입력음성신호로부터 감정의 특징 파라메타를 정의한다. 본 연구에서는 피치 신호, 에너지, 그리고 각각의 미분계수 등의 운율 파라메타를 사용하고, HMM으로 훈련과정을 거친다. 또한, 화자적응을 위해서 최대 사후확률(MAP) 추정에 기초한 감정 모델이 이용된다. 실험 결과로서, 음성에서의 감정 인식률은 적응 샘플수의 증가에 따라 점차적으로 증가함을 보여준다.
재무분석가들은 기업의 파산에 양향을 미치는 예측변수를 탐색하기 위해서 상당한 연구가 수행되어 왔다. 그러나 기술지향적 중소벤처기업은 일반적으로 역사적 재무자료가 부족하고, 기술경쟁력 수준에 따라 잠재적인 고성장과 고위험이 존재한다. 본 논문에서는 재무자료 대신에 기술력평가 자료를 이용하여 파산을 예측하기 위해서 파산예측 판별모형을 제안하였고, 모형의 정분류율을 통해서 예측력을 검증하기 위해서 교차타당성방법, 최대사후확률방법 등을 사용하였다. 분석결과 중소 벤처기업의 파산예측모형으로 선형판별모형이 로지스틱판별모형보다 적합한 모형이고, 표본자료에 대한 정분류율 추정은 약 69% 이고 정분류율 예측은 약 67% 가 될 것으로 기대된다.
다양한 형태의 데이터로부터 의사 결정에 유용한 정보 및 지식을 발견하려는 일련의 데이터분석 및 모형 선정과정을 데이터 마이닝(Data Mining)이라고 할 수 있다. 데이터 마이닝의 적용 예로는 신규고객에 대한 신용평가, 고객이탈방지 등과 같은 분야에서 발생하는 스코링 문제를 들 수 있는데 신용평가에서는 신용이 나쁠 가능성을 스코어로 나타내고 스코어가 높은 고객을 대상으로 특별관리를 할 수 있을 것이며 고객이탈방지에서는 이탈가능성을 스코어로 나타내고 스코어가 높은 고객을 대상으로 이탈 방지 캠페인을 벌일 수 있을 것이다. 본 논문에서는 스코링 문제를 사후확률에 대한 모형화 문제로 파악하였다. 폴리클라스를 스코링 문제에 적용하는 방법을 소개한 후 이를 독일 신용 데이터, 국내 모 PC통신회사 데이터 및 국내 모 이동통신 데이터에 적용하였다. 스코링의 성능은 이득률을 이용하여 평가하고자 하는데 나무 모형에 비하여 폴리클라스 방법이 우수함을 확인하였다.
본 논문에서는 기존의 영상 압축 표준과 호환되며 영상 또는 비디오의 특성에 따라 워터마크를 삽입하는 새로운 방법을 제안한다. 워터마크를 최대의 강도로 삽입하기 위해 블록내의 DCT 계수의 계층구조를 이용한 가중치 함수를 정의한다. 이 구조를 이용하면 DCT 블록 내에서 공간-주파수 지역화 특성을 이용할 수 있다. 워터마크의 검출 단계에서는 통계적 분석을 통한 주어진 오검출 확률에 대한 최적의 사후 임계값을 계산하는 방법을 제시한다. 실험결과는 제안된 방법이 여러 가지 신호처리 공격과 널리 사용되는 JPEG, MPEG 부호화에 강인함을 보여준다.
Turbo codes are the most exciting and potentially important development in coding theory in recent years. They were introduced in 1993 by Berrou, Glavieux and $Thitimajshima,({(1)}$ and claimed to achieve near Shannon-limit error correction performance with relatively simple component codes and large interleavers. A required Eb/N0 of 0.7㏈ was reported for BER of $10^{-5}$ and code rate of $l/2.^{(1)}$ However, to implement the turbo code system, there are various important details that are necessary to reproduce these results such as AGC gain control, optimal wordlength determination, and metric rescaling. Further, the memory required to implement MAP-based turbo decoder is relatively considerable. In this paper, we confirmed the accuracy of these claims by computer simulation considering these points, and presented a optimal wordlength for Turbo code design. First, based on the analysis and simulation of the turbo decoder, we determined an optimal wordlength of Turbo decoder. Second, we suggested the MAP decoding algorithm based on sliding-window method which reduces the system memory significantly. By computer simulation, we could demonstrate that the suggested fixed-point Turbo decoder operates well with negligible performance loss.
본 논문은 영상 복원 문제에 대한 정규화 모수를 찾는 새로운 방법을 제시한다. 사전 정보가 없으면 티코노프(Tikhonov) 정규화 모수를 선택하기 위한 일반화된 교차 검증법이나 L자형 곡선 검정 등의 별도의 최적화 함수가 필요하다. 본 논문에서는 티코노프 정규화에 대한 통합된 베이즈 해석을 소개하고 영상 복원 문제에 적용한다. 티코노프 정규화 모수와 베이즈 하이퍼 모수들의 관계를 정립하고 최대 사후 확률과 근거 프레임워크를 사용한 정규화 모수를 구하는 공식을 제시한다. 실험결과는 제안하는 방법의 효능을 보여준다.
본 연구에서는 비정상성 Bayesian 빈도해석모형을 토대로 외부 기상인자에 의한 시변성을 고려할 수 있는 계절강수량 예측모형을 구축한 후 산정된 결과를 입력 자료로 하여 직접적으로 일단위 이하의 극치강수량을 상세화시킬 수 있는 베타 모델(four parameter beta, 4PB)을 연계하여 한강 및 금강유역의 미래 계절 강수량 전망 및 일단위 이하의 확률강수량을 도출하였다. 모형의 적합성 검증을 위하여 2014~2017년의 모의된 사후 확률분포 값과 관측치를 비교하였다. 그 결과 계절강수량 모의에서 한강은 관측 값의 최대 약 86.3%, 금강은 약 98.9% 일치하는 것을 확인할 수 있었다. 지속시간별 극치강우량은 약 65.9~99.7%의 정확성을 나타냈다. 이에 본 연구에서 산정한 결과는 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용할 수 있을 것으로 판단된다.
장기간의 극치 및 평상시 파고는 연안 및 항만구조물의 계획 및 설계에서 매우 중요한 환경인자이다. 그러나, 한국 연안 심해파의 관측 자료가 한정되어 있기 때문에, 심해설계파의 정보는 기상정보로부터 사후추정 한 장기간의 파랑자료를 이용하고 있다. 본 연구에서는 한국해양연구원(2003)에서 제시한 1979년부터 1998년까지의 한국연안 67개 지점의 16방향별 최대 유의파 산출자료를 이용하여 극치분포 분석을 수행하였다. 특성분석에 사용된 극치분포함수는 FT-I과 Weibull 분포이며, 각 분포함수의 매개변수는 Goda(2004)의 방법을 이용하여 추정하였다. 또한 Goda and Gobune(1990)가 제안한 MIR 값을 산정하여 가장 적합한 확률분포형을 결정하였다. 분석결과 FT-I 분포가 886개 지점, Weibull(k=0.75) 분포가 81개 지점 및 Weibull(k=1.00) 분포가 105개 지점의 확률분포형으로 적합한 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.