• Title/Summary/Keyword: 최대 등가 응력

Search Result 90, Processing Time 0.029 seconds

Effects of Coronal Thread Pitch in Scalloped Implant with 2 Different Connections on Loading Stress using 3 Dimensional Finite Element Analysis (연결부 형태가 다른 두 가지 scallop 임플란트에서 경부 나사선 피치가 응력 분포에 미치는 영향 : 삼차원적유한요소분석)

  • Choi, Kyung-Soo;Park, Seong-Hun;Lee, Jae-Hoon;Huh, Jung-Bo;Yun, Mi-Jung;Jeon, Young-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • Purpose of present study is to investigate the effects of thread pitch in coronal portion in scalloped implant with 2 different connections on loading stress using 3 dimensional finite element analysis. Scalloped implant with 4 different thread pitches (0.4mm, 0.5mm, 0.6, and 0.7mm) in the coronal part was modeled with 2 different implant-abutment connections. Platform matching connection had the same implant and abutment diameter so that they were in flush contact at the periphery while platform mismatching connection had smaller abutment diameter than implant so that their connection was made away from periphery of implant-bone interface. Occlusal loading of 100N force was applied vertically and 30 degree obliquely to all 8 models and the maximum von Mises bone stress was identified. Loading stress as highly concentrated in cortical bone. Platform mismatching scalloped implant with small thread pitch (0.4mm) model had consistently lowest maximum von Mises bone stress in vertical and oblique loads. Platform matching model had lowest maximum von Mises bone stress with 0.6mm thread pitch in vertical load and with 0.4mm thread pitch in oblique load. Platform mismatching connection had important roles in reducing maximum von Mises bone stress. Scalloped implant with smaller coronal thread pitch showed trend of reducing maximum von Mises bone stress under load.

Location-dependent Reliability of Solder Interconnection on Printed Circuit Board in Random Vibration Environment (랜덤진동환경에서 솔더접합부의 인쇄회로기판내 위치에 따른 내구수명 변화 연구)

  • Han, Changwoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • A vibration test coupon is prepared with nine plastic ball grid array packages on a printed circuit board using SnPb solders, and a random vibration test is conducted on the coupon. Life data from the test are analyzed, and it is shown that over the board, life data is location-dependent. For investigating this location dependency, a finite element model is developed and the equivalent stresses, which are defined based on the stress response functions at each node, are investigated. It is shown that one of the corner solder balls has the maximum equivalent stress at a package during the test. Finally, it is demonstrated that the maximum equivalent stress and durability life are inversely proportional.

Equivalent Stress Distribution of a Stepped Bar with Hole under Torsional Loading (구멍이 있는 단이 진 비틀림 봉의 등가응력분포)

  • Kang, Eun Hye;Kim, Young Chul;Kim, Myung Soo;Baek, Tae Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.411-419
    • /
    • 2017
  • Stress concentration is one of the causes of the damage due to the large stress than the mean stress acting on the bar. This paper presents the results for stress of a stepped bar with a hole under torsional loading. The analysis for stress concentration and shearing stress was done by ANSYS Workbench which is a commercial finite element analysis software. The analysis results on fillet and hole are increased as the distance between them are become close. In addition, the distribution of the maximum equivalent stress developed in the fillet and hole in the outside range of the specific distance L (-100 mm ~ 300 mm) was almost constant in the models used in the analysis. On the other hand, the distribution of the maximum equivalent stress developed in the fillet and hole in the inside range of the specific distance L (-100 mm ~ 300 mm) was rapidly increasing and decreasing the change in the models used in the analysis. In addition, it was also possible to identify the location where the differences between equivalent stresses of hole and fillet occurred within a specific distance L (-100 mm ~ 300 mm). The analysis results of paper can used when selecting a hole location in a stepped bar under torsional loading.

Convergence Technique Study of Model Tie Rod End by Configuration through Simulation Analysis (시뮬레이션 해석을 통한 형상 별 타이로드 엔드 모델의 융합 기술 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.161-166
    • /
    • 2016
  • Deformation, stress and fatigue life due to the configuration of tie rod end are investigated in this study. Tie rod ends with the total three kinds of configurations are modelled with three dimensions through CATIA program and the simulation analysis is carried out with the ANSYS finite element analysis program. There are the models of A, B and C by the configuration of the rod end. As this study result, maximum deformation, maximum equivalent stress and maximum fatigue life of A type model are shown to be 0.0614mm, 160.27MPa and 336,930cycles respectively. And maximum deformation, maximum equivalent stress and maximum fatigue life of B type model are shown to be 0.0648mm, 90.889MPa and 1,171,000cycles respectively. Maximum deformation, maximum equivalent stree and maximum fatigue life of C type model are also shown to be 0.0402mm, 84.794MPa and 20,000,000cycles respectively. The durability of the models of tie rod ends through the values of this result could be estimated and the data for the design and development of more improved tie rod end could be secured. And it is possible to be grafted onto the convergence technique at design and be shown as the esthetic sense.

Convergent Study by the Structural Durability Analysis of Landing Gear (랜딩기어의 구조적 내구성 해석에 의한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.191-196
    • /
    • 2020
  • In this study, the durability was analyzed as the models with three shapes depending on the length of the landing gear. Overall, the upper part of the landing gear produced a greater amount of deformation, but the equivalent stress was shown to be high in the upper part just above the lower part. Model 3 shows that the maximum equivalent stress is more than 4 times and the maximum total deformation is more than 24 times compared to model 2. Model 3 showed that the damage could occur beyond the yield stress at the lower end. Model 2 with the upper part longer than the lower part showed the lowest equivalent stress and total deformation among the three models. Therefore, from a structural standpoint, it was shown that model 2 was the most durable at landing and model 3 was the most degraded in terms of durability. The design and analysis results of this study can be effectively applied at grasping the structural durability of landing gear. By applying the structural durability analysis of landing gear, this paper is seen as the convergence study that conforms to aesthetic design.

Effects of Microstructural Arrangement on the Stress and Failure Behavior for Satin Weave. Composites (주자직 복합재료 미세구조의 응력 및 파괴해석)

  • 우경식;서영욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.455-467
    • /
    • 2001
  • In this study, the stacking phase shift effect on the effective property and stress distribution was investigated for 8-harness satin weave textile composites under uni-axial tension. Textile configurations with varied phase shifts were modeled by unit cells and repeating boundary conditions were applied at the outer periodic surfaces. The effective property and stress were calculated by the unit cell analysis using macro-element to reduce the computational resource. It was found that stresses were dependent on the variation of tow arrangement of adjacent layers. The in-phase and the shifted configurations showed large differences in the stress distribution pattern. The stress level was very high in the resin region and the distribution of the maximum stresses was widely scattered.

  • PDF

Influence of Implant Shapes on Stress Distribution in the Jaw Bone by Finite Element Analysis (고정체의 나사산 설계 변수의 변화에 따른 하악골의 응력해석)

  • 전흥재;정신영;한종현;허성주;정종평;최용창;류인철;김명호
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.6
    • /
    • pp.599-606
    • /
    • 2000
  • 고정체 나사산 형상이 식립된 고정체를 둘러싸고 있는 턱 뼈에서 발생된 응력분포에 미치는 영향과 효과적인 나사산 형상을 결정하기 위해서 다양한 치아 고정체 형상에 대해서 응력해석을 수행하였다. 나사산 골 한쪽 부위에 라운딩이 된 형상의 고정체에서 발생된 응력분포는 다른 나사산 형상의 고정체에서 발생된 응력분포보다 더 효과적으로 나타났다. 이 해석 결과를 근거로 최적의 고정체 치수를 결정하기 위해서 나사산 끝단의 폭, 나사산 높이, 그리고 가해지는 하중의 방향 등과 같은 설계 변수의 변화에 따른 응력해석이 수행되었다. 최대 응력 집중은 고정체 나사산의 첫단 부위에서 발생하였으며, 100 N의 15도 경사하중이 가해졌을 때 발생된 최대 등가응력은 동일 크기의 수식하중보다 2배 정도 더 높게 나타났다. 그리고 나사산 끝단의 폭과 나사산 높이 사이의 연관성에 관련된 해석결과에서 나사산 끝단의 폭과 나사산 높이 사이의 연관성 효과는 무시할 만큼 작다는 것을 알았다. 고정체의 나사산 피치에 대한 나사산 끝단의 폭의 비와 나사산 높이의 비가 각각 0.5와 0.46일 때 다른 고정체의 치수들보다 더 효과적인 응력분포가 나타났다

  • PDF

Three-dimensional finite element analysis of stress distribution for different implant thread slope and implant angulation (임플란트 나사선 경사각과 식립 각도에 따른 3차원 유한요소 응력분석)

  • Seo, Young-Hun;Lim, Hyun-Pil;Yun, Kwi-Dug;Yoon, Suk-Ja;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Purpose: The purpose of this study was to find an inclination slope of the screw thread that is favorable in distributing the stresses to alveolar bone by using three dimensional finite element analysis. Materials and methods: Three types modelling changed implant thread with fixed pitch of 0.8 mm is the single thread implant with $3.8^{\circ}$ inclination, double thread implant with $7.7^{\circ}$ inclination and the triple thread implant with $11.5^{\circ}$ inclination. And three types implant angulation is the $0^{\circ}$, $10^{\circ}$ and $15^{\circ}$ on alveolar bone. The 9 modelling fabricated for three dimensional finite element analysis that restored prosthesis crown. The crown center applied on 200 N vertical load and $15^{\circ}$ tilting load. Results: 1. The more tilting of implant angulation, the more Von-Mises stress and Max principal stress is increasing. 2. Von-Mises stress and Max principal stress is increasing when applied $15^{\circ}$ tilting load than vertical load on the bone. 3. When the number of thread increased, the amount of Von-Mises stress, Max principal stress was reduced since the generated stress was effectively distributed. 4. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants. When comparing the magnitude of the maximum principal stress, the triple thread implant had a least amount of stress. This shows that the triple thread implant gave a best result. Conclusion: A triple thread implant to increase in the thread slope inclination and number of thread is more effective on the distribution of stress than the single and double thread implants especially, implant angulation is more tilting than $10^{\circ}$ on alveolar bone. Thus, effective combination of thread number and thread slope inclination can help prolonging the longevity of implant.

Fluid-structure interaction analysis on a low speed 200 W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 유체-구조 연성 해석)

  • Cho, Woo-Seok;Choi, Young-Do;Kim, Hyun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.344-350
    • /
    • 2013
  • The purpose of this study is to examine the structural stability of a low speed 200 W class gyromill type vertical axis wind turbine system. For the analysis, a commercial code is adopted. The pressure distribution on the rotor blade surface is examined in detail. In order to perform unidirectional FSI(Fluid-Structure Interaction) analysis, the pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition. The rotational speed and gravitational force of wind turbine are also considered. The results of FSI analysis show that the wind turbine reveals an enough structural margin. The maximum structural displacement occurs at trailing edge of blade and the maximum stress occurs at the strut.

외부하중을 고려한 추진기관 연소관의 구조 해석

  • 구송회;이방업;조원만;이환규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.159-167
    • /
    • 1995
  • 본 연구는 유도탄 비행시험시에 연소관의 스커트와 날개 장착용 브라켓에 작용하는 공력하중과 연소관에 내압이 동시에 작용하는 추진기관에 대하여 구조 해석하였다. 추진기관의 스커트부 및 브라켓부의 공력하중은 3차원적으로 작용하기 때문에 대칭성을 이용한 $180^{\circ}C$3차원 구조 해석을 수행하여 비행시험, 수압시험, 지상시험 모드에 대하여 응력 수준을 비교하였다. 해석 결과 3가지 모드의 최대 등가응력은 거의 같으며, 비행시험시 공력하중이 앞마개부에 미치는 영향은 최대 등 가응력의 6%이내로 상당히 작았다. 수압시험 모드와 지상시험 모드의 실험치와 해석치를 비교한 결과 정확한 해석을 위해서는 점화기를 모델링과 점화기와 연소관, 브라켓과 연소관에 접촉요소의 적용, 3차원 비선형 해석등 보다 상세한 해석이 필요함을 알 수 있었다.

  • PDF