• Title/Summary/Keyword: 최대투사강도

Search Result 9, Processing Time 0.01 seconds

Reconstruction of Stereo MR Angiography Optimized to View Position and Distance using MIP (최대강도투사를 이용한 관찰 위치와 거리에 최적화 된 입체 자기공명 뇌 혈관영상 재구성)

  • Shin, Seok-Hyun;Hwang, Do-Sik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2012
  • Purpose : We studied enhanced method to view the vessels in the brain using Magnetic Resonance Angiography (MRA). Noticing that Maximum Intensity Projection (MIP) image is often used to evaluate the arteries of the neck and brain, we propose a new method for view brain vessels to stereo image in 3D space with more superior and more correct compared with conventional method. Materials and Methods: We use 3T Siemens Tim Trio MRI scanner with 4 channel head coil and get a 3D MRA brain data by fixing volunteers head and radiating Phase Contrast pulse sequence. MRA brain data is 3D rotated according to the view angle of each eyes. Optimal view angle (projection angle) is determined by the distance between eye and center of the data. Newly acquired MRA data are projected along with the projection line and display only the highest values. Each left and right view MIP image is integrated through anaglyph imaging method and optimal stereoscopic MIP image is acquired. Results: Result image shows that proposed method let enable to view MIP image at any direction of MRA data that is impossible to the conventional method. Moreover, considering disparity and distance from viewer to center of MRA data at spherical coordinates, we can get more realistic stereo image. In conclusion, we can get optimal stereoscopic images according to the position that viewers want to see and distance between viewer and MRA data. Conclusion: Proposed method overcome problems of conventional method that shows only specific projected image (z-axis projection) and give optimal depth information by converting mono MIP image to stereoscopic image considering viewers position. And can display any view of MRA data at spherical coordinates. If the optimization algorithm and parallel processing is applied, it may give useful medical information for diagnosis and treatment planning in real-time.

Pulmonary Nodule Registration using Template Matching in Serial CT Scans (연속 CT 영상에서 템플릿 매칭을 이용한 폐결절 정합)

  • Jo, Hyun-Hee;Hong, He-Len
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.623-632
    • /
    • 2009
  • In this paper, we propose a pulmonary nodule registration for the tracking of lung nodules in sequential CT scans. Our method consists of following five steps. First, a translational mismatch is corrected by aligning the center of optimal bounding volumes including each segmented lung. Second, coronal maximum intensity projection(MIP) images including a rib structure which has the highest intensity region in baseline and follow-up CT series are generated. Third, rigid transformations are optimized by normalized average density differences between coronal MIP images. Forth, corresponding nodule candidates are defined by Euclidean distance measure after rigid registration. Finally, template matching is performed between the nodule template in baseline CT image and the search volume in follow-up CT image for the nodule matching. To evaluate the result of our method, we performed the visual inspection, accuracy and processing time. The experimental results show that nodules in serial CT scans can be rapidly and correctly registered by coronal MIP-based rigid registration and local template matching.

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

The Value of Three-Dimensional Reconstructions of MRI Imaging using Maximum Intensity Projection Technique (유방 MRI의 최대강도투사 기법에 의한 3차원 재구성 영상의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag;Hong, In-Sik;Kim, Hyun-Joo;Jang, Hyun-Cheol;Park, Cheol-Soo;Park, Tae-Nam
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of 3D reconstruction images in breast MRI by performing a quantitative comparative analysis in patients diagnosed with DCIS. On a 3.0T MR scanner, subtraction images and 3D reconstruction images were obtained from 20 patients histologically diagnosed with ductal carcinoma in situ (DCIS). The findings from the quantitative image analysis are the following: The 3D reconstruction images showed higher SNR at the lesion area, ductal area, and fat area that of the subtraction image. In addition, the CNR were not significantly different in the lesion area itself between the subtraction images and 3D reconstruction images.

Usefulness of Three-Dimensional Maximal Intensity Projection (MIP) Reconstruction Image in Breast MRI (유방자기공명영상에서 3 차원 최대 강도 투사 재건 영상의 유용성)

  • Kim, Hyun-Sung;Kang, Bong-Joo;Kim, Sung-Hun;Choi, Jae-Jeong;Lee, Ji-Hye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.183-189
    • /
    • 2009
  • Purpose : To evaluate the usefulness of three-dimensional (3D) maximal intensity projection (MIP) reconstruction method in breast MRI. Materials and Methods : Total 54 breasts of consecutive 27 patients were examined by breast MRI. Breast MRI was performed using GE Signa Excite Twin speed (GE medical system, Wisconsin, USA) 1.5T. We obtained routine breast MR images including axial T2WI, T1WI, sagittal T1FS, dynamic contrast-enhanced T1FS, and subtraction images. 3D MIP reconstruction images were obtained as follows; subtraction images were obtained using TIPS and early stage of contrast-enhanced TIPS images. And then 3D MIP images were obtained using the subtraction images through advantage workstation (GE Medical system). We detected and analyzed the lesions in the 3D MIP and routine MRI images according to ACR $BIRADS^{(R)}$ MRI lexicon. And then we compared the findings of 3D MIP and those of routine breast MR images and evaluated whether 3D MIP had additional information comparing to routine MR images. Results : 3D MIP images detect the 43 of 56 masses found on routine MR images (76.8%). In non-mass like enhancement, 3D MIP detected 17 of 20 lesions (85 %). And there were one hundred sixty nine foci at 3D MIP images and one hundred nine foci at routine MR images. 3D MIP images detected 14 of 23 category 3 lesions (60.9%), 11 of 16 category 4 lesions (68.87%), 28 of 28 Category 5 lesions (100%). In analyzing the enhancing lesions at 3D MIP images, assessment categories of the lesions were correlated as the results at routine MR images (p-value < 0.0001). 3D MIP detected additional two daughter nodules that were descriped foci at routine MR images and additional one nodule that was not detected at routine MR images. Conclusion : 3D MIP image has some limitations but is useful as additional image of routine breast MR Images.

  • PDF

Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose $^{131}I$ Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma (반복적인 $^{131}I$ rituximab 방사면역치료를 시행 받은 비호지킨 림프종 환자 군에서 종양 부위의 영상기반 방사선 흡수선량 평가와 임상적 의의)

  • Byun, Byung-Hyun;Kim, Kyeong-Min;Woo, Sang-Keun;Choi, Tae-Hyun;Kang, Hye-Jin;Oh, Dong-Hyun;Kim, Byeong-Il;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.60-71
    • /
    • 2009
  • Purpose: We assessed the absorbed dose to the tumor ($Dose_{tumor}$) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with $^{131}I$ rituximab for NHL. Materials and Methods: Patients with NHL (n=4) were administered a therapeutic dose of $^{131}I$ rituximab. Serial WB planar images alter RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROls were drawn on the region of tumor (n=7) and left medial thigh as background, and $Dose_{tumor}$ was calculated. The correlation between $Dose_{tumor}$ and the CT-based tumor volume change alter RIT was analyzed. The differences of $Dose_{tumor}$ and the tumor volume change according to the number of RIT were also assessed. Results: The values of absorbed dose were $397.7{\pm}646.2cGy$ ($53.0{\sim}2853.0cGy$). The values of CT-based tumor volume were $11.3{\pm}9.1\;cc$ ($2.9{\sim}34.2cc$), and the % changes of tumor volume before and alter RIT were $-29.8{\pm}44.3%$ ($-100.0%{\sim}+42.5%$), respectively. $Dose_{tumor}$ and the tumor volume change did not show the linear relationship (p>0.05). $Dose_{tumor}$ and the tumor volume change did not correlate with the number of repeated administration (p>0.05). Conclusion: We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

MDCT Angiography of the Subclavian Artery Thrombosis of the 3D Findings (쇄골하동맥 혈전증에서의 MDCT 혈관조영술의 3D 영상)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.813-819
    • /
    • 2018
  • To demonstrate the 3D usefulness of MDCT, a 73-year-old male patient with subclavian thrombosis was obtained 3D images of maximum intensity projection (MIP), volume rendering, and multiplanar reformation (MPR) to clearly detect and locate the subclavian artery. The data will be provided to the patient for diagnosis and treatment. The scan data were acquired as 3D CT images MIP, volume rendering, curved MPR, and virtual endoscopy images. In the 3D program, the ascending aorta was measured as 364.28 HU, the left carotid artery was 413.77 HU, and the left subclavian artery was 15.72 HU. MIP coronal image shows the closure of the subclavian artery in the left side. Three-dimensional volume images were obtained with 100% permeability and 87-1265 HU. The coronal curved MPR and sagittal curved MPR images show the closure of the subclavian artery due to thrombus using 3D image processing. In the case of subclavian arterial occlusion due to thrombosis, the patient is scanned with MDCT and 3D image processing can be used to confirm occlusion of subclavian artery.

Quality Assurance of Leaf Speed for Dynamic Multileaf Collimator (MLC) Using Dynalog Files (Dynalog file을 이용한 동적다엽조준기의 Leaf 속도 정도관리 평가)

  • Kim, Joo Seob;Ahn, Woo Sang;Lee, Woo Suk;Park, Sung Ho;Choi, Wonsik;Shin, Seong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.305-312
    • /
    • 2014
  • Purpose : The purpose of this study is to analyze the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC) and determine the appropriate period of quality assurance (QA). Materials and Methods : The quality assurance of the DMLC equipped with Millennium 120 leaves has been performed total 92 times from January 2012 to June 2014. The the accuracy of leaf position and isocenter coincidence for MLC were checked using the graph paper and Gafchromic EBT film, respectively. The stability of leaf speed was verified using a test file requiring the leaves to reach maximum leaf speed during the gantry rotation. At the end of every leaf speed QA, dynamic dynalog files created by MLC controller were analyzed using dynalog file viewer software. This file concludes the information about the planned versus actual position for all leaves and provides error RMS (root-mean square) for individual leaf deviations and error histogram for all leaf deviations. In this study, the data obtained from the leaf speed QA were used to screen the performance degradation of leaf speed and determine the need for motor replacement. Results : The leaf position accuracy and isocenteric coincidence of MLC was observed within a tolerance range recommanded from TG-142 reports. Total number of motor replacement were 56 motors over whole QA period. For all motors replaced from QA, gradually increased patterns of error RMS values were much more than suddenly increased patterns of error RMS values. Average error RMS values of gradually and suddenly increased patterns were 0.298 cm and 0.273 cm, respectively. However, The average error RMS values were within 0.35 cm recommended by the vendor, motors were replaced according to the criteria of no counts with misplacement > 1 cm. On average, motor replacement for gradually increased patterns of error RMS values 22 days. 28 motors were replaced regardless of the leaf speed QA. Conclusion : This study performed the periodic MLC QA for analyzing the mechanical and leaf speed accuracy of the dynamic multileaf collimator (DMLC). The leaf position accuracy and isocenteric coincidence showed whthin of MLC evaluation is observed within the tolerance value recommanded by TG-142 report. Based on the result obtained from leaf speed QA, we have concluded that QA protocol of leaf speed for DMLC was performed at least bimonthly in order to screen the performance of leaf speed. The periodic QA protocol can help to ensure for delivering accurate IMRT treatment to patients maintaining the performance of leaf speed.

Evaluation of Cerebral Aneurysm with High Resolution MR Angiography using Slice Interpolation Technique: Correlation wity Digital Subtraction Angiography(DSA) and MR Angiography(MRA) (Slice Interpolation기법의 고해상도 자기공명혈관조영술을 이용한 뇌동맥류의 진단 : 디지탈 감산 혈관조영술과 자기공명 혈관조영술의 비교)

  • ;;;Daisy Chien;Gerhard Laub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.94-102
    • /
    • 1997
  • Purpose: There have been some efforts to diagnose intracranial aneurysm through a non-invasive method using MRA, although the process may be difficult when the lesion is less than 3mm. The present study prospectively compares the results of high resolution, fast speed slice interpolation MRA and DSA thereby examing the potentiality of primary non-invasive screening test. Materials and Methods: A total of 26 cerebral aneurysm lesions from 14 patients with subarachnoid hemorrhage from ruptured aneurysm (RA) and 5 patients with unruptured aneurysm(UA). In all subjects, MRA was taken to confirm the vessel of origin, definition of aneurysm neck and the relationship of the aneurysm to nearby small vessels, and the results were compared with the results of DSA. The images were obtained with 1.5T superconductive machine (Vision, Siemens, Erlangen, Germany) on 4 slabs of MRA using slice interpolation. The settings include TR/TE/FA=30/6.4/25, matrix $160{\times}512$, FOV $150{\times}200$, 7minutes 42 seconds of scan time, effective thickness of 0.7 mm and an entire thickness of 102. 2mm. The images included structures from foramen magnum to A3 portion of anterior cerebral artery. MIP was used for the image analysis, and multiplanar reconstruction (MPR) technique was used in cases of intracranial aneurysm. Results: A total of 26 intracranial aneurysm lesions from 19 patients with 2 patients having 3 lesion, 3 patients having 2 lesions and the rest of 14 patients having 1 lesion each were examined. Among those, 14 were RA and 12 were UA. Eight lesions were less than 2mm in size, 9 lesions were 3-5mm, 7 were 6-9mm and 2 were larger than IOmm. On initial exams, 25 out of 26 aneurysm lesions were detected in either MRA or DSA showing 96% sensitivity. Specificity cannot be estimated since there was no true negative of false positive findings. When MRA and MPR were used concurrently for the confirmation of size and shape, the results were equivalent to those of DSA, while in the confirmation of aneurysm neck and parent vessels, the concurrent use of MRA and MPR was far superior to the sole use of either MRA or DSA. Conclusion: High resolution MRA using slice interpolation technique showed equal results as those of DSA for the detection of intracranial aneurysm, and may be used as a primary non-invasive screening test in the future.

  • PDF