• Title/Summary/Keyword: 최대응력

Search Result 1,497, Processing Time 0.032 seconds

Structural Safety Analysis on Car Body at Overturn (전복시 차체에 대한 구조 안전 해석)

  • Cho, Jae-Ung;Kim, Key-Sun;Lee, Eun-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • In this study, the changes of displacement and stress are investigated by structural analysis according to the thickness of car body in case of overturn. In case of 5 mm thickness, the maximum displacement of 7.5024 mm at its right ceiling and the maximum equivalent stress of 113.69 MPa at the left lower part are occurred on the elapsed time of 2 second. In case of 10 mm thickness, the maximum displacement of 1.2557 mm at its right ceiling and the maximum equivalent stress of 15.134 MPa at the left lower part are occurred on the elapsed time of 2 second. In case of 15 mm thickness, the maximum displacement of 0.426067 mm at its right ceiling and the maximum equivalent stress of 4.4842 MPa at the left lower part are occurred on the elapsed time of 2 second. As stress and displacement are uniformly distributed according to time in this case, the design of car body can be stabilized.

Stress-Strain Model in Compression for Lightweight Concrete using Bottom Ash Aggregates and Air Foam (바텀애시 골재와 기포를 융합한 경량 콘크리트의 압축 응력-변형률 모델)

  • Lee, Kwang-Il;Mun, Ju-Hyun;Yang, Keun-Hyeok;Ji, Gu-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.216-223
    • /
    • 2019
  • The objective of this study is to propose a reliable stress-strain model in compression for lightweight concrete using bottom ash aggregates and air foam(LWC-BF). The slopes of the ascending and descending branches in the fundamental equation form generalized by Yang et al. were determined from the regression analyses of different data sets(including the modulus of elasticity and strains at the peak stress and 50% peak stress at the post-peak performance) obtained from 9 LWC-BF mixtures. The proposed model exhibits a good agreement with test results, revealing that the initial slope decreases whereas the decreasing rate in the stress at the descending branch increases with the increase in foam content. The mean and standard deviation of the normalized root-square mean errors calculated from the comparisons of experimental and predicted stress-strain curves are 0.19 and 0.08, respectively, for the proposed model, which indicates significant lower values when compared with those(1.23 and 0.47, respectively) calculated using fib 2010 model.

Shape optimal design of a dust cover for ball joint of automotive steering system (조향장치용 볼 조인트 더스트 커버의 형상최적설계)

  • Lee, Boo-Youn;Kim, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.603-610
    • /
    • 2013
  • Finite element analysis is performed to evaluate stress and deformation of a wrinkle-type dust cover for the ball joints of tie rods of automotive steering system. Results of the analysis for assembly and operation condition show that sealing capability is good and the maximum stress on the body is smaller than the tensile strength. An optimal shape of the dust cover is obtained using the Taguchi method to reduce the maximum stress. The maximum stress of the optimal design under the operation condition is reduced by 22 per cent of that of the initial design. Results of the research show that performance evaluation and design of the dust covers can be effectively done using the proposed method.

A Study on the Residual stress of Diamond-like Carbon Films Deposited by RF PECVD (RF PECVD로 증착된 다이아몬드상 탄소막의 잔류응력에 관한 연구)

  • Choi, Woon;Nam, Seung-Eui;Kim, Hyoung-June
    • Korean Journal of Materials Research
    • /
    • v.6 no.12
    • /
    • pp.1162-1169
    • /
    • 1996
  • rf 플라즈마 화학증착을 이용하여 증착된 hydrogenated DLC막의 잔류응력 거동에 대해 조사하였다. 합성된 DLC막의 압축 잔류응력은 이온 에너지뿐만 아니라 이온/원자 유입량 비에 의해 영향을 받는 것으로 조사되었다. 잔류응력의 최대치는 이온/원자 유입량비가 증가할수록 낮은 이온 에너지 구간에서 일어나며 그 값은 증가하였다. 이온 에너지에 따른 DLC막의 결합 구조의 변형을 Raman 스펙트럼을 이용하여 분석하였다. DLC막의 잔류응력은 sp3결합의 net working이 최대가 되는 점에서 최대치를 보이며, 이는 sp3 net working에 의한 부피팽창 요인에 기인하는 것으로 생각된다. DLC막 내의 유입되는 수소는 잔류응력의 직접적인 원인으로 작용하지 않는 것으로 분석되었다.

  • PDF

Photoelastic analysis of the Stress distribution on an intervertebral disc (추간판 응력분포에 대한 광탄성 해석)

  • Shin, Hyun-Kug;Lee, Jae-Chang;Ahn, Myun-Whan;Ahn, Jong-Chul;Ihn, Joo-Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.223-239
    • /
    • 1989
  • To observe the change in the status of stresses according to three different postural angulation of an intervertebral disc with or without nucleus pulposus, 6 specimens of a 3-dimensional photoelastic model of the s pine were made of epoxy. The nucleus pulposus portion was replaced with silicon in three models, and the three were made without silicon. Through axial application of a vertical compressive load of 8kg, the peculiar patterns of the isochromatic fringes were observed. Stresses on the intervertebral disc were analyzed according to three different postural angulations of the intervertebral disc with the nucleus pulposus and without the nucleus pulposus. The results of these study are as follow : 1. In an erect neutral posture with the nucleus pulposus, the stress concentration was much increased at the posterior portion rather than at the anterior portion. Also, the high stress was concentrated at the medial and central portion. In an erect neutral posture without the nucleus pulposus, the stress concentration was much increased at the anterior portion rather than at the posterior portion and the stress distribution seemed to be locally concentrated. 2. In a maximal flexed posture, the stress concentration was much increased at the posterior portion rather than at the anterior portion. Comparing the presence of the nucleus pulposus with the absence of the nucleus pulposus, the stress concentration was lower at the anterior portion in the presence of the nucleus pulposus than in the absence of the nucleus pulposus. However, the stress distribution at the posterior portion was nearly same in the two groups. According to the analysis of the stress distribution diagram, as a whole, the stress pattern around the disc was evenly distributed. 3. In a maximal extended posture, the higher concentration of the stress distribution at the anterior and medial portion rather than in the posterior and lateral portion was observed. The stress concentration was higher in the presence of the nucleus pulposus than in the absence of the nucleus pulposus. 4. Comparing the maximal flexed posture with the erect neutral posture, the stress concentration in the flexed posture was much decreased in the posterior portion rather than in the erect neutral posture, and an even distribution of the stress pattern in the flexed posture was observed. 5. In the presence of the nucleus pulposus, at the anterior and posterior portion, the stress concentration in the flexed posture was much decreased compared with the extended posture. In the absence of the nucleus pulposus, at the anterior and posterior portion, the stress concentration in the extended posture was much decreased compared with the flexed posture.

  • PDF

An Investigation on the Characteristics of Local Factors of Safety of Rock Failure and Their Dependency on the Stress Paths (암석파괴 국부안전율의 특성과 응력경로 의존성 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2017
  • The factor of safety (FOS) is commonly used as an index to quantitatively state the degree of safety of various rock structures. Therefore it is important to understand the definition and characteristics of the adopted FOS because the calculated FOS may be different according to the definition of FOS even if it is estimated under the same stress condition. In this study, four local factors of safety based on maximum shear stress, maximum shear strength, stress invariants, and maximum principal stress were defined using the Mohr-Coulomb and Hoek-Brown failure criteria. Then, the variation characteristics of each FOS along five stress paths were investigated. It is shown that the local FOS based on the shear strength, which is widely used in the stability analysis of rock structures, results in a higher FOS value than those based on the maximum principal stress and the stress invariants. This result implies that the local FOS based on the maximum shear stress or the stress invariants is more necessary than the local FOS based on the shear strength when the conservative rock mechanics design is required. In addition, it is shown that the maximum principal stresses at failure may reveal a large difference depending on the stress path.

Finite Element Analysis on the Bearing Loads and Stress of Safety Helmets with an Extruded Structure (정상부에 돌출구조물을 구비한 안전모의 지지하중 및 응력에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents the finite element analysis results for bearing loads and stress distributions of safety helmets with an extruded structure. Five different analysis models with given same displacement load of 9.4mm have been analyzed for bearing loads and maximum von Mises stress. In these models, model 4 and model 5 are recommended as a maximum bearing load and low maximum stress for given displacement load of 9.4mm.

A Study on dynamic Fracturing Behavior of Anisotropic Granite by SHPB Test (스플릿 흡킨슨 바(SHPB)를 이용한 이방성 화강암의 동적파괴거동 연구)

  • Choi, Mi-Jin;Cho, Sang-Ho;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.214-218
    • /
    • 2008
  • Dynamic fracturing of anisotropic granite was investigated by SHPB (Split Hopkinson Pressure Bar). Energy absorption during the test and maximum stress were increased as strain rate increased. Maximum stresses in every direction were dependent on the strain rate but not so sensitive to anisotropy. Elastic wave velocity was decreased as strain rate increased and dependent on strain rate in every direction. Especially, elastic wave velocity decreased more rapidly in a strong rock.

End-Shape Effect for Stress Concentration Reduction of Composite Single-Lap Bonded Joint (끝단형상에 따른 복합소재 단일겹치기 체결부의 응력집중 저감에 관한 연구)

  • Kim, Jung-Seok;Hwang, Jae-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.333-340
    • /
    • 2011
  • We evaluated the stress-reduction effect for different shapes of a composite adherend with or without a spew fillet. Six different single-lap joint specimens were modeled and assessed using nonlinear finite element analysis. Moreover, we investigated the effect of the stiffness ratio of the adherend and adhesive. The single-lap joint with normal tapering had the highest stress values, and the single-lap joint with reverse tapering and a spew fillet had the lowest stress values. The composite adherends with higher stiffness had lower stress values, and the adhesives with lower stiffness had lower stress values.

접촉요소(Contact Element)를 적용한 나사체결부(Thread joint)의 구조해석

  • 구송회;이방업;조원만;이환규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.15-24
    • /
    • 1996
  • 로켓모타의 연소관은 구조적인 편의성 및 경량화를 위하여 도옴-실린더부와 실린더-노즐부에 나사체결방법을 많이 적용하고 있는데, 나사의 골부위에 집중응력이 발생하여 인장강도를 넘는 응력이 발생하는 경우가 있다. 본 연구에서는 나사의 골부위의 응력수준을 좀 더 정확히 예측하기 위하여 나사체결시 작용하는 조립 토오크에 의한 초기하중을 고려한 구조해석을 수행하였으며, 나사부위에 발생하는 응력이 항복강도를 초과하므로 정확한 해석을 위하여 탄소성해석을 수행하였다. 조립 토오크에 의한 초기하중은 나사체결 멈춤부에 음(-)의 접촉 간극을 부여하여 모델링하였으며, 조립 토오크의 크기는 나사체결 근접부에서 변형률을 측정하여 모사하였다. 해석결과 초기하중을 고려하여 구조해석을 수행하면 최대예상 작동압력에서 초기하중의 영향은 거의 나타나지 않았으며, 마찰계수를 감소시키면 최대응력이 감소하여 구조적 안전성이 증가할 것으로 판단된다.

  • PDF