• Title/Summary/Keyword: 총유기탄소

Search Result 110, Processing Time 0.029 seconds

Environmental Characteristics of Seawater and Sediment in Mariculture Management Area in Ongjin-gun, Korea (옹진군 어장관리해역의 수질 및 퇴적물 환경 특성)

  • Kim, Sun-Young;Kim, Hyung-Chul;Lee, Won-Chan;Hwang, Dong-Woon;Hong, Sok-Jin;Kim, Jeong-Bae;Cho, Yoon-Sik;Kim, Chung-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.570-581
    • /
    • 2013
  • To improve productivity of aquaculture animals with management of culturing grounds, survey of mariculture management area in Ongjin-gun about water quality and sedimentary environment had been conducted on June, August and November in 2011. Water temperature in surface and bottom waters ranged from 9.49 to $24.14^{\circ}C$. Salinity and dissolved oxygen concentrations were in the range of 23.19~31.49 and 5.48~9.36 mg/L, respectively, depending on the variation of water temperature. The average concentration of COD was 1.57 mg/L and the concentrations of DIN and DIP showed entirely low level. As the result of grain size analysis, sand(56.66 %) and silt(34.60 %) were predominated. The Mz of sediment showed a variation of 2.59 to $6.62{\O}$ and sorting appeared to be poorly sorted. The concentrations of COD and IL in surface sediment ranged from 1.00 to $11.03mg/g{\cdot}dry$ and 0.72 to 5.29 %, respectively, which showed relatively good positive correlations. On the environmental assessment of trace metals in surface sediment, geoaccumulation index ($I_{geo}$) class indicated that sediments were not contaminated by most of metallic elements except Cr and As. Our result implies that this study area showed good water quality and sediments were not polluted by organic matters and metallic elements.

Soil Chemical Property and Microbial Community under Organic and Conventional Radish Farming Systems (무 유기재배와 관행재배 토양의 화학성과 미생물 군집 비교)

  • Kang, Ho-Jun;Yang, Sung-Nyun;Song, Kwan-Cheol;Cho, Young-Yuen;Kim, Yu-Kyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • This study was conducted to investigate the responses of soil properties and microbial communities to different agricultural management and soil types, including organic management in Andisols (Org-A), organic management in Non-andisols (Org-NA), conventional management in Andisols (Con-A) and conventional management in Non-andisols (Con-NA) by using a pyrosequencing approach of 16S rRNA gene amplicon in Radish farms of volcanic ash soil in Jeju island. The results showed that agricultural management systems had a little influence on the soil chemical properties but had significant influence on microbial communities. In addition, soil types had significant influences on both the soil chemical properties and microbial communities. Organic farming increased the microbial density of bacteria and biomass C compared to conventional farming, regardless of soil types. Additionally, Org-NA had the highest dehydrogenase activity among treatments, whereas no difference was found between Org-A, Con-A and Con-NA and had the highest species richness (Chao 1) and diversity (Phyrogenetic diversity). Particularly, Chao 1 and Phyrogenetic diversity were increased in organic plots by 12% and 20%, compared with conventional plots, respectively. Also, regardless of agricultural management and soil types, Proteobacteria was the most abundant bacterial phylum, accounting for 21.9-25.9% of the bacterial 16S rRNAs. The relative abundance of putative copiotroph such as Firmicutes was highest in Org-NA plot by 21.0%, as follows Con-NA (13.1%), Con-A (6.7%) and Org-A (5.1%.), respectively and those of putative oligotrophs such as Acidobacteria and Planctomycetes were higher in Con-A than those in the other plots. Furthermore, LEfSe indicated that organic system enhanced the abundance of Fumicutes, while conventional system increased the abundance of Acidobacteria, especially in Non-andisols. Correlation analysis showed that total organic carbon (TOC) and nutrient levels (e.g. available P and exchangeable K) were significantly correlated to the structure of the microbial community and microbial activity. Overall, our results showed that the continuous organic farming systems without chemical materials, as well as the soil types made by long-term environmental factors might influence on soil properties and increase microbial abundances and diversity.

Geochemical Results and Implication of the Organic Matter in the Holocene Sediments from the Hupo Basin (후포분지 홀로세 퇴적물의 유기물에 대한 지화학 분석 결과 및 의미)

  • Kim, Ji-Hoon;Park, Myong-Ho;Kong, Gee-Soo;Han, Hyun-Chul;Cheong, Tae-Jin;Choi, Ji-Young;Kim, Jin-Ho;Kang, Moo-Hee;Lee, Chi-Won;Oh, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Geochemical approaches on the two recovered piston cores were performed to understand the characteristics of organic matters and the influence of the sea level variation of the East Sea in the Hupo Basin since the Holocene. The analyzing results on organic components (TOC and TN), and isotopic compositions of organic matters showed the variation to core locations and sampling depths. In core 08HZP-01, their values were gradually changed with depth from 4 mbsf to seafloor. However, rapid variation was observed at the boundary of 4.71 mbsf (meter below seafloor) in core 08HZP-03. Based on TOC/TN, $\delta^{13}C_{org}$ and $\delta^{15}N_{org}$, the origin of organic matters in the Hupo Basin can be divided into three groups; 1) predominant marine algae, 2) $C_3$ land plant, and 3) mixture of $C_3$ land plant and marine/freshwater algae. It is likely that the vertical and spatial variations of organic and isotopic compositions reflect the shifts in sedimentary environment (including sediment transportation) by ocean currents and sea-level changes and others during the Holocene period.

A Study on the Pollution of Polycyclic Aromatic Hydrocarbons(PAHs) in the Surface Sediments Around Gwangyang Bay (광양만 주변해역 표층퇴적물에서의 다환방향족탄화수소류(PAHs)의 오염에 관한 연구)

  • You, Young-Seok;Choi, Young-Chan;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.9-20
    • /
    • 2007
  • PAHs(Polycyclic Aromatic Hydrocarbons) are widespread contaminants in the marine environment. They are of mainly anthropogenic origin from urban runoff, oil spill and combustion of fossil fuels. Some PAHs are potentially carcinogenic and mutagenic to aquatic organism The contamination of PAHs in the coastal environments has not been well known yet in Korea. This study was carried out to survey the contamination of PAHs in sediments around Gwangyang bay. The Yeosu petrochemical industrial complex, POSCO(Pohang steel company) and Gwangyang container harbor are located around the bay. PAHs in sediment samples were extracted in soxhlet extractor and were identified and quantified by GC-MS(Gas Chromatography-Mass Spectrometry) TOC(Total Organic carbon) and textural parameters in sediment samples were also analyzed 13 species of PAHs were detected at all of the surface sediments. Total PAHs concentrations in the surface sediments ranged from 171.40 to $1013.54{\mu}g/kg$ dry wt.. In most of the surface sediments, Naphthalene was the highest in the range of 14.08 to $691.39{\mu}g/kg$ dry wt. and Anthracene was the lowest in the range of 0.49 to $22.66{\mu}g/kg$ dry wt.. The correlation coefficients between individual PAHs and Total PAHs in the surface sediments were relatively higher in the low molecular compounds such as Naphthalene and Phenanthrene. In the relationship of the P/A(Phenanthrene/Anthracene) ratio and F/P(Fluoranthene/Pyrene) ratio, P/A ratio was generally above 10 and F/P ratio was shown to be above 1 in all sediment samples. These data indicate that PAHs in sediments around Gwangyang bay seem to be of both pyrolytic and petrogenic origin. Total PAHs in the surface sediments were correlated with TOC and textural parameters. The values of PAHs in the surface and core sediments were lower than the biological effect guidelines.

  • PDF

Evaluation of Basin-Specific CH4 emission flux from Intertidal Flat Sediments of Sogeun-ri, Taean, Mid-west Korea (한국 서해안 태안 소근리 갯벌의 메탄가스 발생량 특성)

  • Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Lee, Dong-Hun;Jang, Seok;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.281-291
    • /
    • 2014
  • In March to August 2013, the emission of gases ($CH_4$, VOC, $CO_2$, $O_2$, and LEL) was measured three times from the intertidal flat sediments at Sogeun-ri, Taean-gun, in the Mid-western seashore of Korea by using chamber method. After analyzing gas emission concentrations inside of flux enclosure chamber by using a GC equipped with Agilent 6890. The gas emission fluxes were calculated from a linear regression of the changes in the concentrations with time. The ranges of gas flux during the experimental period were $+0.06{\sim}+0.60mg/m^2/hr$ for $CH_4$, $+58.45{\sim}+95.58mg/m^2/hr$ for $CO_2$, $-0.02{\sim}-0.20mg/m^2/hr$ for $O_2$, and $-0.60{\sim}+0.65mg/m^2/hr$ for VOC, respectively. The flux measurement results revealed that $CH_4$ fluxes during March in the relatively low sediment temperature ($14.5^{\circ}C$) were significantly higher ($+0.60mg/m^2/hr$) than during June and August ($+0.06{\sim}+0.18mg/m^2/hr$) in high sediment temperature ($32.0{\sim}36.8^{\circ}C$). $CH_4$ flux to mean size of sediments and temperature of inner chamber exhibited strong positive correlation ($R^2=-0.97$ and $R^2=-0.89$, respectively).

Organic Matter and Heavy Metals Pollution Assessment of Surface Sediment from a Fish Farming Area in Tongyoung-Geoje Coast of Korea (통영-거제 연안 어류 양식장 표층 퇴적물 중 유기물 및 중금속 오염 평가)

  • Hwang, Dong-Woon;Hwang, Hyunjin;Lee, Garam;Kim, Sunyoung;Park, Sohyun;Yoon, Sang-Pil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.510-520
    • /
    • 2021
  • To understand the status of organic matter and heavy metal pollution in surface sediment of a fish farming area, we have measured the concentrations of total organic carbon (TOC), total nitrogen (TN), and heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn) in surface sediments of a fish farming area near Tongyoung-Geoje coast. The mean concentrations of TOC and TN were 22.7 mg/g and 3.4 mg/g, respectively, and were much higher than those in surface sediments of a semi-enclosed bay in the southern coast of Korea. The mean concentrations of As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn were 10.5 mg/kg, 0.37 mg/kg, 82.9 mg/kg, 127 mg/kg, 4.19%, 0.041 mg/kg, 596 mg/kg, 39.5 mg/kg, and 175 mg/kg, respectively, and the mean concentrations of Cd and Cu were three times higher than those in surface sediments of shellfish farming area in the southeastern coast of Korea. In addition, the concentrations of TOC and corrected Cu exceeded the values of sediment quality guidelines applied in Korea, and pollution load index (PLI) and ecological risk index (ERI) showed that the metal concentrations in the sediments of some fish farming area have a strongly negative ecological impact on benthic organisms, although most metal concentrations did not exceed the sediment quality guidelines. Based on overall assessment results, the surface sediments of fish farming areas in the study region are polluted with organic matter and some heavy metals. Thus, a comprehensive management plan is necessary to improve the sedimentary environments, identify primary contamination sources, and reduce the input of pollution load for organic matter and heavy metals in the sediments of fish farming areas.

Changes in Benthic Polychaete Community after Fish Farm Relocation in the South Coast of Korea (어류양식장 이전 후 저서다모류 군집 변화)

  • Park, Sohyun;Kim, Sunyoung;Sim, Bo-Ram;Park, Se-jin;Kim, Hyung Chul;Yoon, Sang-Pil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.943-953
    • /
    • 2021
  • The purpose of this study is to investigate sediment recovery after the relocation of fish cage farms, by examining the changes in sediments and the benthic polychaete community. A preliminary survey was carried out in October 2017, before the relocation of the farms, and monthly surveys were conducted from November 2017 to October 2018 after the farms were moved. Subsequently, it was conducted every 2-3 months until October 2020. The survey was carried out at three stations (Farm1-3) at the location of the removed fish farms and at three control stations (Con1-3) without farms. The overall organic carbon content of the farm stations was higher than the control stations, but it gradually decreased after the farm was demolished, and there was no statistically significant difference about one year after the relocation of the farms (p<0.05). In the benthic polychaete community, abiotic community appeared at the farm stations in the summer, and consequently, the community transitioned to a low-diversity region with the predominant species Capitella capitata, which is an indicator of pollution. Until the abiotic period in the summer of the next year, the species diversity increased and the proportion of indicator species decreased, showing a tendency of recovering the benthic polychaete community, and these changes were repeated every year. In this study, the abiotic community appeared every year owing to the topographical characteristics, but as the survey progressed, the period of abiotic occurrence became shorter and the process of community recovery progressed expeditiously. Biological recovery of sediments after the relocation of the fish farms is still in progress, and it is imperative to study recovery trends through continuous monitoring.

Meiobenthic community structure in the coastal area of Hallyeohaesang National Park (한려해상국립공원 해역에 서식하는 중형저서동물의 계절별 군집 변동 특성)

  • Teawook Kang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.125-137
    • /
    • 2022
  • To assess the characteristics of meiofaunal community fluctuations related to environmental factors, seasonal surveys were conducted in the subtidal zone of Hallyeohaesang National Park. The average depth of the study area was about 20 m, and the average water temperature at the bottom was low in winter(11.33℃) and high in summer(17.95℃). The sedimentary particles mainly comprised silt and clay at most stations. The abundance of meiofauna ranged from 81.7 to 1,296.5 Inds. 10 cm-2, and the average abundance was 589.3 Inds. 10 cm-2. The average abundance of meiofauna in each season was the lowest at 416.5 Inds. 10cm-2 in winter and the highest at 704.5Inds.10 cm-2 in spring. The dominant taxa were nematodes (about 92%) and harpacticoids (about 5%). In the cluster analysis of meiofaunal communities, they were divided into four significant groups. The largest group mainly contained spring and summer samples, and contained stations with a high nematode density of over 500 Inds. 10 cm-2 and harpacticoids below 50 Inds. 10 cm-2 with a high composition ratio of nematodes. In the cluster analysis, no regional division was found between the stations, and it was thought to be divided by the seasons with high abundance according to seasonal variation and the composition ratio of nematodes and harpacticoids. In the Spearman rank correlation analysis, the density of total meiofauna and the most dominant taxa, nematodes, was not significantly related to environmental factors. However, the density of harpacticoids had a significant positive correlation with water depth and a negative correlation with sediment particle size.

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea (서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가)

  • Lee, Jun-Ho;Rho, Kyoung Chan;Woo, Han Jun;Kang, Jeongwon;Jeong, Kap-Sik;Jang, Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.147-160
    • /
    • 2015
  • In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

Evaluation of the Giggenbach Bottle Method with Artificial Fumarolic Gases (인공 분기공 가스를 이용한 Giggenbach bottle 법의 평가)

  • Lee, Sangchul;Kang, Jungchun;Yun, Sung Hyo;Jeong, Hoon Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.681-692
    • /
    • 2013
  • We aimed to evaluate the effectiveness of the Giggenbach bottle method and develop the related pretreatment and analytical methods using artificial fumarolic gases. The artificial fumarolic gases were generated by mixing $CO_2$, CO, $H_2S$, $SO_2$, $H_2$, and $CH_4$ gas streams with a $N_2$ stream sparged through an acidic medium containing HCl and HF, with their compositions varied by adjusting the gas flow rates. The resultant fumarolic gases were collected into an evacuated bottle partially filled with a NaOH absorption solution. While non-condensible gases such as CO, $H_2S$, and $CH_4$ accumulated in the headspace of the bottle, acidic components including $CO_2$, $SO_2$, HCl, and HF that were dissolved into the alkaline solution. Like other acidic components, $H_2S$ also dissolved into the solution, but it reacted with dissolved $Cd^{2+}$ to precipitate as CdS when $Cd(CH_3COO)_2$ was added. The non-condensible gases were analyzed on a gas chromatography. Then, CdS precipitates were separated from the alkaline solution by filtration, and they were pretreated with $H_2O_2$ to oxidize CdS-bound sulfide into sulfate. In addition, a portion of the solution was also pretreated with $H_2O_2$ to oxidize sulfite to sulfate. Following the pretreatment, the resultant samples were analyzed for $SO_4^{2-}$, $Cl^-$ and $F^-$ on an ion chromatography. In the meanwhile, dissolved $CO_2$ was analyzed on a total organic carbon-inorganic carbon analyzer without such pretreatment. According to our experimental results, the measured concentrations of the fumarolic gases were shown to be proportional to the gas flow rates, indicating that the Giggenbach bottle method is adequate for monitoring volcanic gas. The pretreatment and analytical methods employed in this study may also enhance the accuracy and reproducibility of the Giggenbach bottle method.