• Title/Summary/Keyword: 촉매 성형

Search Result 46, Processing Time 0.029 seconds

A study on the properties of artificial aggregates containing bottom ash from the power plant and waste catalyst slag (화력발전소 바닥재와 폐촉매 슬래그로 제조된 인공골재의 특성 연구)

  • Jo, Si-Nae;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • The artificial aggregate composing of coal bottom ash and waste catalyst slag (7 : 3, wt%) were fabricated using direct sintering method and, the bloating properties of aggregates were investigated as a function of raw material particle size and sintering temperature. Most of the artificial aggregates sintered at over $1150^{\circ}C$ showed the bloating phenomenon regardless of particle size of the raw materials. Consequently, the specific gravity of the aggregates was drastically decreased to below 1.4. The aggregates containing waste catalyst slag of $90{\mu}m$ under among the W-series specimens, however, did not show the noticeable bloating phenomenon. For the aggregates sintered at lower temperature as $1050{\sim}1150^{\circ}C$, the specific gravity increased with particle size of raw materials. Also, the water absorption of all aggregates decreased with the sintering temperature. The aggregates fabricated in this study met the lightweight aggregate standard showing the specific gravity 1.7~1.4 and water absorption 8~19 % and, therefore, can be applicable for the various fields.

Basic Studies on Propellant Casting (II). Effects of Solid Additives on Urethane Polymerization (추진제 성형에 관한 기초연구 (제2보). 우레탄 중합에 미치는 첨가제 효과)

  • Young Gu Cheun;Ik Choon Lee;Shi Choon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.214-218
    • /
    • 1981
  • Kinetic studies were carried out on urethane polymerization reaction of hydroxyl-terminated polybutadiene with isophorone diisocyanate under presence of Hexogen as solid additive. The rate was found to increase with the amount of Hexogen added. However the rate acceleration was not a catalytic effect but solely due to an increase of activation entropy. The reaction was a good 2nd order process with nearly constant activation energy of 8.4 kcal/mole.

  • PDF

Flow Properties of Liquid Epoxy Compounds as a Function of Filler Fraction for the Underfill (Underfill용 액상 Epoxy Compound의 Filler 충진에 따른 Flow특성 연구)

  • 김원호;황영훈;배종우;정혜욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2000
  • To develop the underfill materials which are required for the new process of semi-conductor industry, the properties of epoxy/anhydride/cobalt(II) catalyst system with two types of fused silica(1 $\mu\textrm{m}$, 8 $\mu\textrm{m}$) are studied as a function of filler fraction. According to the curing profile, the optimum catalyst amount was 1.0 wt% for full curing at the conditions of $160^{\circ}C$/l5 min., and we could conclude that the viscosity has superior effect on the real flaw through the relationship between surface tension and viscosity data. The underfills which were filled with 1 $\mu\textrm{m}$ fused silica did not show good flowability, but they should be useful by improving the viscosity for a future process which has small gaps. The underfills which were filled with 8 $\mu\textrm{m}$ fused silica showed good flowability when the filler contents were 55~60 vol%. The model which was referred by Matthew can predict the real flow length only when the underfill has high viscosity and low surface tension.

  • PDF

Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution (전기적 염소 발생 촉매활성을 위한 성형된 루테늄 산화물 나노로드와 나노시트 전극의 개발)

  • Luu, Tran Le;Kim, Choonsoo;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.373-381
    • /
    • 2017
  • $RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.

Experimental of Gas Emissions of Furan Binder According to Temperature Using TG-MS (TG-MS를 활용한 온도에 따른 후란 바인더 가스발생 시험)

  • Kwak, Si-Young;Cho, In-Sung;Lee, Heekwon
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.516-520
    • /
    • 2021
  • During sand casting, the binders produces gases in cores because high temperature molten metals dissolve the binders into gases and causes gas defects in the casting products. In the present study, quantitative analysis of inorganic binder gas generation was performed using Thermo Gravimetry (TG) and Mass Spectrometer (MS) analyses. The specimen was prepared using organic binders in liquid and solid state, and a mixture of sand and binders. Moisture loss by catalysts was calculated by TG results from liquid and solid binder specimens; it was found that components of gases were different. Quantitative analysis was discussed for generated gases with individual gas component results obtained using TG and MS. It is expected that gas generation can be predicted in the casting simulation using the technique proposed in the present study.

Effect of CH3COOH Concentration on Characteristics of Fe2O3Supported δ-alumina Catalyst by Hydrothermal Method (CH3COOH 농도가 수열법으로 제조된 Fe2O3 담지 감마알루미나 촉매의 특성에 미치는 영향)

  • 박병기;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.758-764
    • /
    • 2003
  • The cylindrical ${\gamma}$-alumina pellets were prepared by forming, hydration, drying and calcination after mixing amorphous alumina and pore generating agent with water. Concentration of Fe(NO$_3$)$_3$ㆍ9$H_2O$ that was catalyst precursor was fixed and made mixing solution that changed concentration of $CH_3$COOH in range of 2.5~20%, and here ${\gamma}$-alumina pellets were immerged and were hydrothermaly treated for 3 h at $200^{\circ}C$. And then we investigated creation and change of crystal, pore characteristics, $N_2$ adsorption and desorption isotherms, changes of acid site and mechanical strengths etc. According to the concentration of $CH_3$COOH, the crystals grew to acicular shape of 0.5~2${\mu}m$ length, and crystal structure showed the pseudo-boehmite structure. When hydrothermaly treated in 10% $CH_3$COOH solution, pore volume between 100~1000 $\AA$ was highest by 0.86 cc/g, and width of hysteresis curved line due to $N_2$ adsorption/desorption appeared as was smallest. When concentration of $CH_3$COOH was in range of 5~15%, new C-H functional groups were formed. Mechanical strength of pellets was highest by 1.35 MPa when $CH_3$COOH concentration was 2.5%.

Preparation of Fe2O3 Supported γ-alumina Catalyst by Hydrothermal Method (수열법에 의한 Fe2O3 담지 감마알루미나 촉매제조)

  • 박병기;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.683-689
    • /
    • 2003
  • The cylindrical ${\gamma}$-alumina pellets were prepared using amorphous alumina and pore generating agent. Its were immersed in aqueous solution of the mixture of Fe(NO$_3$)$_3$.9$H_2O$ and $CH_3$COOH, Fe(NO$_3$)$_3$.9$H_2O$ and $CH_3$COOH and HNO$_3$, and Fe(NO$_3$)$_3$.9$H_2O$ and HNO$_3$. The pellets thus were hydrothermally treated at 20$0^{\circ}C$ for 3 h in autoclave, and were investigated morphologies and changes of crystal pore characteristics, $N_2$ adsorption and desorption isotherms, active sites and mechanical strength etc. According to the preparation method, acicular platelet pseudo-boehmite crystals of 0.1~0.3 ${\mu}{\textrm}{m}$ size were transformed into acicular pseudo-boehmite cristals of 0.5~2 ${\mu}{\textrm}{m}$ size having the same crystal structure. When ${\gamma}$-alumina pellets were immersed in aqueous solution of the mixture of Fe(NO$_3$)$_3$.9$H_2O$ and $CH_3$COOH and then were hydrothermally treated, pore volume between 100 $\AA$ and 1000 $\AA$ was increased from 0.34 ㏄/g to 0.86 ㏄/g, and the gap of $N_2$ adsorption and desorption hysteresis loop was decreased due to increasement of pore size. New active site that could adsorb the C-H functional group was created on the catalist. Also, mechanical strength of catalyst was increased from 1.06 ㎫ to 1.36 ㎫.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

Effects of Reactive Diluents on the Curing Behavior of Epoxy Resin (에폭시 수지의 경화 거동에 미치는 반응성 희석제의 영향)

  • Kim, Wan-Young;Lee, Dai-Soo;Kim, Hyung-Soon;Kim, Jung-Gee
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1030-1035
    • /
    • 1994
  • Curing behavior and glass transition temperatures of epoxy resins into which reactive diluents were added to control processability were investigated. Heat of cure generated of the epoxy resin was reduced with butyl glycidyl ether(BGE) and phenyl glycidyl ether(PGE) contents. $T_g$ of the resin was decreased with the amount of reactive diluents and it was attributed to increased molecular weight between crosslink points. Cure kinetics of the resins was studied employing autocatalytic reaction model and found that reaction constants decreased as the contents of reactive diluent was increased.

  • PDF

Cure Kinetics of Self-Extinguishing Epoxy Resin Systems with Charge Transfer Complex Type Latent Catalyst for Semiconductor Encapsulation (전하전이착체형 잠재성 촉매를 사용한 반도체 성형용 자소성 에폭시 수지 시스템의 경화 반응속도 연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.27-32
    • /
    • 2014
  • The cure properties of self-extinguishing epoxy resin systems with different charge transfer type latent catalysts were investigated, which are composed of YX4000H as a biphenyl epoxy resin, MEH-7800SS as a hardener, and charge transfer type latent catalysts. We designed and used five kinds of charge transfer type latent catalyst and compared to epoxy resin systems with Triphenylphosphine-Benzoquinone(TPP-BQ) as reference system. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The epoxy resin systems with Triphenylphosphine-Quinhydrone(TPP-QH), Triphenylphosphine-Benzanthrone(TPP-BT) and Triphenylphosphine-Anthrone(TPP-AT) as a charge transfer type latent catalyst showed a cure conversion rate of equal or higher rate than those with TPP-BQ. These systems with TPP-QH and Triphenylphosphine-Tetracyanoethylene(TPP-TCE) showed a critical cure reaction conversion of equal or higher conversion than those with TPP-BQ. The increases of cure conversion rates could be explained by the decrease of the activation energy of these epoxy resin systems. It can be considered that the increases of critical cure reaction conversion would be dependent on the crystallinity of the biphenyl epoxy resin systems.