Browse > Article
http://dx.doi.org/10.11001/jksww.2017.31.5.373

Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution  

Luu, Tran Le (Department of Mechatronics & Sensor Systems Technology, Vietnamese German University)
Kim, Choonsoo (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Asian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University (SNU))
Yoon, Jeyong (School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Asian Institute for Energy, Environment & Sustainability (AIEES), Seoul National University (SNU))
Publication Information
Journal of Korean Society of Water and Wastewater / v.31, no.5, 2017 , pp. 373-381 More about this Journal
Abstract
$RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.
Keywords
Chlorine evolution; Electro-catalyst; nanorod; nanosheet; $RuO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Ananth, S. Dharaneedharan, M. Gandhi, M. Heo, Y. Mok (2013). Novel $RuO_2$ nanosheets - Facile synthesis, characterization and application, Chemical Chem. Eng. J. 223, 729-736.   DOI
2 A. Bard, L. Faulkner (2001). Electrochemical methods - Fundamentals and applications, Wiley, New York, pp. 226-261
3 C. Malmgren, A. K. Eriksson, A. Cornell, J. Backtrom, S. Eriksson, H. Olin. (2010). Nanocrystallinity in $RuO_2$ coatings - Influence of precursor and preparation temperature, Thin Solid Films. 518, 3615-3618.   DOI
4 D. Music, J. Breunung, S. Mraz, J. Schneider (2012). Role of $RuO_3$ for the formation of $RuO_2$ nanorods, Appl. Phys. Lett. 100, 033108   DOI
5 G. Zhao, L. Zhang, K. Sun, H. Li (2014). Free-standing $Pt@RuO_2{\cdot}xH_2O$ nanorod arrays on Si wafers as electrodes for methanol electro-oxidation, J. Power Sources. 245, 892-897.   DOI
6 H. Friedrich, P. Jongh, A. Verkleij, K. Jong (2009). Electron tomography for heterogeneous catalysts and related nanostructured materials, Chem. Rev. 109, 1613-1626.   DOI
7 H. P. Klug, L. E. Alexander (1974). X-ray Diffraction Procedures, Wiley, New York.
8 J. Chou, Y. Chen, M. Yang, Y. Chen, C. Lai, H. Chiu, C. Lee, Y. Chueh, J. Gan (2013). $RuO_2/MnO_2$ core-shell nanorods for supercapacitors, J. Mater. Chem. A. 1, 8753-8759.   DOI
9 J. Han, S. Lee, S. Kim, S. Han, C. Hwang, C. Dussarrat, and J. Gatineau (2010). Growth of $RuO_2$ thin films by pulsed-chemical vapor deposition using $RuO_4$ precursor and 5% $H_2$ reduction gas, Chem. Mater. 22, 5700-5706.   DOI
10 J. Jeong, C. Kim, J. Yoon (2009). The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res. 43, p 895-901.   DOI
11 J. Osmana, J. Crayston, A. Pratt, D. Richens (2008). $RuO_2-TiO_2$ mixed oxides prepared from the hydrolysis of the metal alkoxides, Mater. Chem. Phys. 110, 256-262.   DOI
12 J. Tiwari, R. Tiwari, K. Kim, Zero-dimensional (2012). one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater Sci. 57, 724-803.   DOI
13 L. Dong and J. Jiao (2006). Dielectrophoretic fabrication and electron microscopy characterization of one-dimensional-nanomaterial-based devices, Microscopy and Microanalysis. 12, 482-483.   DOI
14 M. CaO, Y. Wang, C. Guo, Y. Qi, C. Hu, E. Wang (2004). A simple route towards CuO nanowires and nanorods, J. Nanosci. Nanotechnol. 4, 824-828.   DOI
15 R. Liu, J. Duay and S. Lee (2011). Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chem. Commun. 47, 1384-1404.   DOI
16 M. Gopiraman, S. Babu, Z. Khatri, K. Wei, M. Endo, R. Karvembu and I. Kim (2013). Facile and homogeneous decoration of $RuO_2$ nanorods on graphene nanoplatelets for transfer hydrogenation of carbonyl compounds, Catal. Sci. Technol. 3, 1485.   DOI
17 P. Schmittinger (2000). Chlorine: principle and industrial practice, Wiley, New York, 21-34.
18 R. Burrows, D. Denton and J. Harrision (1978). Chlorine and oxygen evolution on various compositions of $RuO_2/TiO_2$ electrodes, Electrochim. Acta. 23, 493-500.   DOI
19 R. Chen, V Trieu, A. R. Zeradjanin, H. Natter, D. Teschner, J. Kintrup, A. Bulan, W. Schuhmann and R. Hempelmann (2012). Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction, Phys. Chem. Chem. Phys. 14, 7392-7399.   DOI
20 R. Chen, V. Trieu, H. Natter, J. Kintrup, A. Bulan, R. Hempelmann (2012). Wavelet analysis of chlorine bubble evolution on electrodes with different surface morphologies, Electrochem. Commun. 22, 16-20.   DOI
21 R. Kotz and S. Stuck (1986). Stabilization of $RuO_2$ by $IrO_2$ for anodic oxygen evolution in acid media, Electrochim. Acta. 31, 1311-1316.   DOI
22 S. Ardizzone, G. Fregonara, S. Trasatti (1990). Inner and outer active surface of $RuO_2$ electrodes, Electrochim. Acta. 35, 263-267.   DOI
23 S. Neupane, G. Kaganas, R. Valenzuela, L. Kumari, X. Wang, W. Li. (2011). Synthesis and characterization of ruthenium dioxide nanostructures, J. Mater Sci. 46, 4803-4811.   DOI
24 S. Trasatti (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta. 29, 1503-1512.   DOI
25 Y. Inoue, M. Uota, M. Uchigasaki, S. Nishi, T. Torikai, T. Watari, M. Yada (2008). Helical Ruthenium compound templated by 1-Dodecanesulfonate assemblies and its conversion into helical Ruthenium oxide and helical metallic Ruthenium, Chem. Mater. 20, 5652-5656.   DOI
26 Tran Le Luu, Jiye Kim, Jeyong Yoon (2015). hysicochemical properties of $RuO_2$ and $IrO_2$ electrodes affecting chlorine evolutions, Journal of J. Ind. Eng. Chem. vol 21, 400-404.   DOI
27 V. Panic, A. Dekanski, S. Milonjic, R. Atanasoski, B. Nikolic (1999). $RuO_2-TiO_2$ coated titanium anodes obtained by the sol-gel procedure and their electrochemical behaviour in the chlorine evolution reaction, Colloids Colloids Surf. A. 157, 269-274.   DOI
28 V. Panic, A. Dekanski, M. Stankovic, S. Milonjic, B. Nikoli (2005). On the deactivation mechanisms of $RuO_2-TiO_2/Ti$ anodes prepared by the sol-gel procedure, J. Electroanal. Chem. 579, 67-76.   DOI
29 V. Srinivasan, P. Arora, P. Ramadass (2006). Report on the electrolytic industries for the year 2004, Journal of the J. Electrochem. Soc. 153, K1.   DOI
30 V. Trieu, B. Schleya, H. Nattera, J. Kintrup, A. Bulan (2012). R. Hempelmann, $RuO_2$-based anodes with tailored surface morphology for improved chlorine electroactivity, Electrochim. Acta. 78, 188-194.   DOI
31 Y. Lee, B. Kim, H. Jung, J. Shim, Y. Lee, C. Lee, J. Baik, W. Kim, M. Kim (2012). Hierarchically grown single crystalline $RuO_2$ nanorods on vertically aligned few walled carbon nanotubes, Mater. Lett. 89, 115-117.   DOI
32 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan (2003). One dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15, 353-389.   DOI
33 Z. Li, Y. Xiong, Y. Xie (2003). Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route, Inorg. Chem. 42, 8105-8109.   DOI