• Title/Summary/Keyword: 촉매 가수분해 반응

Search Result 180, Processing Time 0.025 seconds

Production of Biosugar from Red Macro-algae Eucheuma cottonii using Acid-hydrolysis (Eucheuma cottonii로부터 산 가수분해를 통한 biosugar 생산)

  • Lee, Sang-Bum;Jeong, Gwi-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.48-54
    • /
    • 2016
  • In this study, biosugar production by the red-algae Eucheuma cottonii was investigated using dilute sulfuric acid-catalyzed hydrolysis and data analysis by response surface methodology. This approach yielded 25.8 g/l total reducing sugar under the conditions of $160.1^{\circ}C$, 1% (v/v) sulfuric acid, and 13.1 min. The sugar concentration showed a linear inverse correlation with the combined severity factor (CSF) of the reaction conditions. CSF was calculated as $log(t{\cdot}e{xp}[(T_H-T_R)/14.75])-pH$, where t is the coupling reaction time, $T_H$ is the target temperature, and $T_R$ is the reference temperature ($100^{\circ}C$). In addition, levulinic acid production showed a linear positive correlation with CSF. E. cottonii may represent a useful feedstock for sugar production in the field of bioenergy.

Kinetics and Mechanism of Hydrolysis of Insecticidal Imidacloprid (살충성 Imidacloprid의 가수분해 반응 메카니즘)

  • Yu, Sung-Jae;Kang, Moon-Sung;Sung, Nack-Doo
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.53-57
    • /
    • 1997
  • The rate of hydrolysis of insecticidal 1-(6-chloro-3-pyridylmethyl) -2-nitro-iminoimidazolidine (common name; imidacloprid) have been investigated in 15%(v/v) aqueous dioxane at $45^{\circ}C$. From the kinetics and non-kinetics data such as pH-effect, solvent effect(m=0.04, n=0.30 IT m<${\Delta}H^{\neq}=16.14kcal{\cdot}mol^{-1}\;&\;{\Delta}S^{\neq}=-0.03e.u.$), rate equation ($k_{obs.}=4.56{\times}10^{-3}[OH^-]$) and analysis of hydrolysis product, 1-(6-chloro-3-pyridylmethyl-2)-imidazolidinon, the hydrolysis mechanism of imidacloprid is proposed that the specific base catalyzed hydrolysis($K_{OH^-}$) through nucleophilic addition-elimination ($Ad_N-E$) mechanism proceed via intermediate, 1-(6-chloro-3- pyridylmethyl)-2-hydroxy-2-imidazolidinylisonitraminate (I) and ${\beta}$-3-(6-chloro-3-pyridylmethyl)aminoethyl-1-nitrourea(III). And the half-life(t1/2) of hydrolytic degradation at pH 8.0 and $45^{\circ}C$ was about 4.5 months.

  • PDF

Characterization of the Extracellular ${\beta}-Galactosidase$ Produced from Streptomyces sp. YB-9 (Streptomyces sp. YB-9가 생산하는 균체외 ${\beta}-galactosidase$의 특성)

  • Lee, Kyung-Seop;Kim, Chang-Jin;Yoon, Ki-Hong
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.299-304
    • /
    • 2003
  • A strain YB-9 was isolated from soil as a producer of the extracellular ${\beta}-D-galactosidase$, which catalyzes the hydrolysis of lactose. The strain YB-9 was identified as Streptomyces sp. on the basis of its cultural, morphological and physiological properties. After treating culture supematant of the isolate with ammonium sulfate $(15{\sim}70%)$, the precipitated protein was used as a crude ${\beta}-galactosidase$ for analyzing its reaction properties with $para-nitrophenyl-{\beta}-D-galactoside$ $(pNP-{\beta}Gal)$ and lactose as substrates. The {\beta}-galactosidase showed its maximal activity at pH $6.0{\sim}6.5$ and $60^{\circ}C$. The hydrolyzing activity of ${\beta}-galactosidase$ for both $pNP-{\beta}Gal$ and lactose was decreased by galactose. Its hydrolyzing activity for lactose was slightly decreased by glucose, but the activity for $pNP-{\beta}Gal$ was increased to 1.3-folds by glucose. Especially, its hydrolyzing activity was not affected for lactose and was increased to 1.6-folds for $pNP-{\beta}Gal$ by xylose.

Enhanced Heterologous Expression of Aspergillus niger Epoxide Hydrolase and Its Application to Enantioselective Hydrolysis of Racemic Epoxides (Aspergillus niger의 Epoxide Hydrolase 고효율 발현 및 라세믹 에폭사이드의 입체선택적 가수분해)

  • Lee, Soo Jung;Kim, Hee Sook;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.557-560
    • /
    • 2006
  • The epoxide hydrolase (EH) of Aspergillus niger LK was expressed to high levels in Escherichia coli based on codon usage. E. coli, Rosetta (DE3)PLysS, containing a large number of tRNAs for rare-codons was employed as a host strain. The recombinant E. coli expressing A. niger EH showed an enhanced enantioselective hydrolysis activity toward racemic styrene oxide. Enantiopure (S)-styrene oxide with a high enantiopurity of 99% ee was obtained from racemic substrates.

Kinetics and mechanism of hydrolysis of insecticidal buprofezin (살충제 buprofezin의 가수분해 반응 메카니즘)

  • Sung, Nack-Do;Yu, Seong-Jae;Choi, Kyung-Sub;Kwon, Ki-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.46-52
    • /
    • 1998
  • The hydrolysis rate of insecticidal buprofezin(IUPAC : tert-butylimino-3-isopropyl-5-phenylperhydro-1,3,5-thiadiazin-4-one) in the range of pH 2.0 and 12.0 have been examined in 15%(v/v) aqueous dioxane at $45^{\circ}C$. The hydrolysis mechanism of buprofezin is proposed from the pH-effect, solvent effect(${\ell}{\gg}m$), thermodynamic parameter(${\Delta}H^{\neq}$=11.12 $Kcal{\cdot}mol^{-1}$ &, ${\Delta}S^{\neq}=5.0e.u.$), rate equation and hydrolysis product, l-isopropyl-3-phenyl urea. General acid catalyzed hydrolysis and specific acid catalyzed($k_{H3O+}$) hydrolysis through $A-S_{E}2$ and A-2(or $A_{AC}2$) reaction mechanism with orbital-control reaction proceed below pH 8.0 and above pH 9.0, the nucleophilic addition-elimination, $Ad_{N}-E$ mechanism via tetrahedral($sp^{3}$) intermediate is initiation by general base catalyzed($k_{H2O}$) reaction. Buprofezin was more stable in alkaline ($k=10^{-8}sec.^{-1}$) than acid solutions from the sigmoid pH-rate profile. And the half-life($t=\frac{1}{2}$) of hydrolysis reaction in neutral aqueous solution(pH 7.0) at $45^{\circ}C$ was about 3 months.

  • PDF

Separation of Wood Components by Acetone (아세톤에 의한 목재 조성분의 분리)

  • Song, Byung-Hee;Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.230-241
    • /
    • 2010
  • The purpose of this study was to seek the optimum condition for effective separation of the chemical constituents of wood biomass by means of hydrolysis of acetone solution in presence of acid salt as a catalyst. Out of diverse acid salts the catalytic effect of aluminum sulfate ($Al_2(SO_4)_3$) was the most excellent during the hydrolysis of wood biomass in the acetone solution and the optimum concentration was 0.01 M (6.3 wt%). In the condition of mixture ratio of acetone and water to 9 : 1 as well as optimum concentration of aluminum sulfate two wood biomass species, oak wood (Quercus mongolica Fischer) and Pine wood (Pinus densiflora Sieb. et Zucc.), was hydrolyzed for 45 minutes at $200^{\circ}C$ and the degree of hydrolysis was determined to 92.7% and 92.4%, respectively. Extending the reaction time to 60 minutes in the mixture ratio of acetone and water to 8 : 2 the degree of hydrolysis of oak wood was also ca. 92.7%. In the case of Pinus, however, the similar hydrolysis ratio was obtained at $210^{\circ}C$. As the temperature and hydrolysis time increased, the quantitative amount of lignin recovered from the hydrolysate clearly increased, whereas the total amount of carbohydrates in the hydrolysate decreased rapidly. Considering the recoverable amount of lignin and carbohydrate in the hydrolysate, the best condition for the hydrolysis of wood biomasses were confirmed to the mixture ratio of acetone and water to 8 : 2, the concentration of aluminum sulfate of 6.3 wt%, hydrolysis temperature of $190^{\circ}C$ for 60 minutes. In this condition the total amounts of carbohydrate in the hydrolysates of oak wood and pine wood were estimated to 47.6% and 51.4%, respectively. The amount of lignin recovered from the hydrolysates were ca. 18.2% for oak wood and 13.7% for pine wood.

Property and Catalytic Activity of Heteropoly Acid Supported on MCM-41, 48 Mesoporous Material and SiO2 (MCM-41, 48 메조포러스 물질 및 SiO2에 담지한 헤테로폴리산의 특성 및 촉매적 활성)

  • Park, Jung-Woo;Kim, Beom-Sik;Lee, Jung-Min;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1020-1027
    • /
    • 1999
  • Heteropoly acid(HPW) catalysts supported on three different carriers, an amorphous silica, MCM-41 and MCM-48, with different loadings and calcination temperatures have been prepared and characterized by X-ray diffraction, nitrogen physorption, infrared spectroscopy, and $^{31}P$ magic angle spinning NMR. From the result of IR and NMR, it was shown that HPW retains the Keggin structure on the supported catalysts. No HPW crystal phase was developed even at HPW loadings as high as 35 wt % on the MCM-41 and 65 wt % MCM-48. Thus, HPW appeared to form finely dispersed species. In the hydrolysis reaction of di, bis, tri-pentaerythritol, HPW/MCM-41, 48 exhibited higher catalytic activity than $HPW/SiO_2$ or HPW.

  • PDF

Catalytic Hydrolysis of p-Nitrophenyl Palmitate in Aqueous Dipalmitoyl Phosphatidyl Choline Bilayer Membrane (Dipalmitoyl Phosphatidyl Choline Bilayer Membrane 촉매에 의한 para-Nitrophenyl Palmitate의 가수분해 반응)

  • Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.48-51
    • /
    • 2008
  • Dipalmitoyl phosphatidyl choline and p-nitrophenyl palmitate were directly sonicated in acidic water for 6 minutes to give clear stock solutions. The catalytic hydrolysis of p-nitrophenyl palmitate was studied at $30-50^{\circ}C$ in the presence of unilamellar vesicle and mixture of unilamellar and multilamellar aggregates. The difference of reaction rate between unilamellar and multilamellar was observed. The rate of unilamellar reaction compared to the rate of mixture reaction showed more catalytic effect. The phase transition temperature of vesicle was measured at $37-44^{\circ}C$.

Biocatalysis and Biotransformation for the Production of Chiral Epoxides (바이오촉매 및 생물전환을 이용한 광학활성 에폭사이드 제조)

  • Kim, Hee-Sook;Lee, Ok-Kyung;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.772-778
    • /
    • 2005
  • Chiral epoxides are important chiral synthons in organic synthesis for the production of chiral pharmaceuticals and functional food additives. Chiral epoxides can be synthesized by enantioselective introduction of oxygen to double bond of substrate by monooxygenase. Peroxidase also carry out asymmetric epoxidation of alkene in the presence of hydrogen peroxide. Kinetic resolution of racemic epoxides via enantioselective hydrolysis reaction by epoxide hydrolase (EH) is a very promising method since chiral epoxides with a high optical purity can be obtained from cheap and readily available racemic epoxides. In this review, various biocatalytic approaches for the production of chiral epoxides with several examples are presented and their commercial potential is discussed.

The Synthesis and Characterization of (TBMA)Macromer Grafted Anionic Acrylic Copolymer ((TBMA)Macromer를 그라프트시킨 음이온성 아크릴 공중합체의 합성과 물성)

  • Kim, Hyoung-Ook;Noh, Si-Tae;Kang, Shin-Chun
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.627-636
    • /
    • 1993
  • Anionic acrylic resin utilizing macromer(TBMA-g-MMA) copolymer was synthesized by preparing (TBMA) macromer using anionic living polymerization, followed by graft copolymerization with MMA macromer. To control the anionic site content in graft copolymer, the relative composition((TBMA) macromer/MMA ratio) of the graft copolymer was controlled at 7/3, 10/90, 15/85, 20/80, 30/70, 40/60, 50/50 in weight content. In the course of anionic living polymerization of(TBMA) macromer, broad molecular weight distribution (1.4~1.5) was obtained by using n-butyllithium-diphenyethylene initiatior system at $-78^{\circ}C$. To introduce the double bond at the end of chain in termination step, methacryloyl chloride was reacted after insertion of benzaldehyde as capping material. Moreover, TBMA parts in graft copolymer were hydrolyzed in the presence of p-toluenesulfonic acid catalyst, and neutralization of graft copolymer with triethylamine was granted acrylic resin to anionic site. Molecular weight and molecular weight distribution of(TBMA) macromer were determined by GPC, and the hydrolysis of TBMA with neutralization of acrylic resin were determined by IR and NMR. From water dispersion and stability point of view, stable dispersion state appeared at low molecular weight(TBMA) macromer with a small TBMA content as a result of scrutiny about the relation to TBMA content and branch length for(TBMA) macromer molecular weight in graft copolymer.

  • PDF