Hwang, Ra Hyun;Park, Ji Hye;Baek, Jeong Hun;Im, Hyo Been;Yi, Kwang Bok
Clean Technology
/
v.24
no.1
/
pp.35-40
/
2018
$Co_3O_4$ catalysts for $N_2O$ decomposition were prepared by co-precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. Also, 1 wt% $K_2CO_3$ was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. The prepared catalysts were characterized with SEM, BET, XRD, XPS and $H_2-TPR$. The $Co_3O_4$ catalyst exhibited a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was confirmed that the doping of K improves the catalytic activity by increasing the concentration of $Co^{2+}$ in the catalyst which is an active site for catalytic reaction. The catalytic activity tests were carried out at a GHSV of $45,000h^{-1}$ and a temperature range of $250{\sim}375^{\circ}C$. The K-impregnated $Co_3O_4$ catalyst showed much higher activity than $Co_3O_4$ catalysts with promoter only. It is found that the K-impregnation increased the concentration of $Co^{2+}$ more than the added of promoter did, and lowered the reduction temperature to a great extent.
Thermal degradation of styrene dimer fraction (SDF, main compound: 47 wt% of 1,3-diphenylpropane), 5~15% of total products produced during decomposition of waste expanded polystyrene (WEPS) was investigated. Reaction condition of $360^{\circ}C$, and 152 kPa to 202 kPa was an optimum for high pressure degradation. Under this operating condition, the yield of oil was 73.8% and the selectivities to Ben, Tol, EB, SM, and AMS were 0.4, 30.9, 15.0, 19.6, and 4.2%, respectively. Non-catalytic fixed bed continuous degradation was conducted at reaction temperatures of $510{\sim}610^{\circ}C$ and contact time ranges of 2~24 min, where the yield was increased by increasing of reaction temperature and contact time. A $Cr_2O_3$ catalyst showed the highest activity and SM yield among acid, base, and redox catalysts. The conversion of 74.6% and the yield of Ben, Tol, EB, SM, and AMS were 0.4, 21.6, 9.7, 17.9, and 3.5%, respectively at $560^{\circ}C$ and contact time of 24 min. It is thought that styrene is converted to EB and other secondary products throughout the formation of diradicals of styrene.
$N_2O$ decomposition characteristics of dual bed mixed metal oxide catalytic system was investigated. The partial oxidation of methane at first reactor of dual bed catalytic system was performed over Co-Rh-Al (1/0.2/1) catalyst under the optimized condition of $8,000h^{-1}$ GHSV, gas ratio ($CH_4:O_2=5:1$) at $500^{\circ}C$. In the dual bed system investigated herein, the second catalyst bed was employed for the $N_2O$ decomposition using product of partial oxidation of methane at first bed. An excellent $N_2O$ conversion activity even at lower temperature ($<250^{\circ}C$) was obtained with Co-Rh-Al (1/0.2/1) or Co-Rh-Zr-Al (1/0.2/0.3/1) catalyst by combining Co-Rh-Al (1/0.2/1) hydrotalcite catalyst for the partial oxidation of methane in a dual-bed system. The $N_2O$ conversion activity is drastically reduced in the presence of oxygen in second bed of a dual-bed system over Co-Rh-Al (1/0.2/1) catalyst at $300^{\circ}C$.
Journal of Korean Society of Environmental Engineers
/
v.37
no.12
/
pp.668-673
/
2015
Alumina-based catalysts with different Ce loadings were studied in the decomposition of $CF_4$ using microwave heating system. Heating material of microwave system used Silicon Carbide. The crystallographic phases of catalysts were investigated by XRD and decomposition rates of $CF_4$ were examined by GC-TCD. The catalysts of 10 wt% Ce modified $Al_2O_3$ showed higher $CF_4$ decomposition rate than un-modified $Al_2O_3$ for $500^{\circ}C$ reaction temperature. The k value of catalysts shows the order of $Ce(20)/Al_2O_3=Ce(0)/Al_2O_3<Ce(5)/Al_2O_3<Ce(10)/Al_2O_3$. XRD patterns of $Ce(0)/Al_2O_3$ were no difference before and after the reaction and showed $Al_2O_3$ phases. With the increase in Ce loadings, $CeO_2$, $AlF_3$ of XRD peaks was observed. The results was indicated that Ce modifed $Al_2O_3$ than un-modifed $Al_2O_3$ was decreased reaction temperature to $200^{\circ}C$ with same decomposition rate. Also the appropriated cerium sulfate loadings on $Al_2O_3$ were 5~10 wt%.
Jo Seoung-Hye;Lee Sang-Geun;Lee Je-Geun;Kim Il-Gyu
Proceedings of the Korean Society of Soil and Groundwater Environment Conference
/
2005.04a
/
pp.163-166
/
2005
[ $TiO_2$ ] 광촉매에 의한 분해 반응의 활성을 높이기 위한 다양한 연구가 진행되었다. 광촉매 반응은 1차 반응을 따랐으며 초기농도가 높을수록 분해효율이 감소하는 경향을 보였다. 본 연구에서는 산화제로 과산화수소가 주입되었을 경우 분해효율을 조사하였으며, 과산화수소를 주입하였을 경우가 그렇지 않은 경우보다 더 높은 분해효율을 보였다. 또한 과산화수소 주입량을 달리했을 때, 주입량이 증가할수록 효율이 높아지다가 일정량 이상에서는 오히려 효율이 감소하는 것으로 나타났다. 따라서 과산화수소 최적첨가량이 존재함을 알 수 있었다. 한편 $TiO_2$에 전이금속을 첨가하여 전이금속이 $TiO_2$ 촉매의 분해효율에 미치는 영향을 알아보았다. Pt(0.5%)-$TiO_2$가 가장 높은 분해효을을 보였으며, Pt첨가함량이 더 큰 Pt(2%)-$TiO_2$는 함량이 증가했음에도 불구하고 큰 차이는 아니지만 오히려 효율이 감소하였다. 따라서 촉매표면에서 전자와 정공이 생성되었을 때, Pt가 전자를 포획함으로써 전자와 정공의 재결합율을 감소시켜 OH라디칼을 생성할 수 있는 정공이 많아져 반응효율을 증가되는 것을 알 수 있었고, 금속에 따른 최적 첨가함량이 존재함을 알 수 있다. 반면에 Pd를 첨가했을 경우는 첨가 함량에 관계없이 모두 분해효율이 오히려 감소하는 경향을 나타냈으며 이는 전이금속 고유의 성질이나, 또는 대상물질에 따라 각기 다른 경향이 존재함을 나타내며 추가적인 연구가 필요하다고 사료된다.
An Sung-Yong;Lee Jong-Kwang;Rang Seong-Min;Kwon Se-Jin
Journal of the Korean Society of Propulsion Engineers
/
v.9
no.4
/
pp.1-8
/
2005
An experimental investigation of a microthruster that uses hydrogen peroxide as a monopropellant is described. The study comprises of preparation method of silver as a catalyst and performance evaluation of a mesoscale reactor. Reduction of silver in $H_2\;at\;500^{\circ}C$ resulted in the best reactivity of all the treatment method tested. A mesoscale reactor was built to find the optimum configuration for full decomposition of propellant. The catalyst bed was made of a glass wafer substrate sputtered with silver and had a length of 20 mm. We measured the conversion rate with varying feed rate of $H_2O_2$ and preheating temperature. With the feed rate of $H_2O_2$, the space time within the reactor varies as well. For the bed length of 20 mm, space time more than 480 s was required for full conversion.
수소에너지는 화석연료 사용의 증가로 인한 환경오염 및 자원고갈의 문제점을 해결해 줄 수 있는 미래의 청정한 에너지이다. 현재 주 에너지원인 화석연료의 사용에 의하여 배출된 오염물질이 지구온난화와 같은 문제점들을 일으킨다. 이러한 문제점들을 없애줄 수 있는 대안 중 하나가 수소에너지이다. 수소에너지는 자원이 풍부하며 연소시에 오염물질이 배출되지 않는 장점이 있다. 수소에너지는 수소를 연소시켜서 얻는 에너지로써, 수소를 태우면 같은 무게의 가솔린 보다 3배나 많은 에너지를 방출한다. 수소를 생산하는 방법 중 가장 이상적인 방법은 물을 분해하는 방법이다. 그러나 이 방법은 수소를 대량으로 생산하기에는 아직 기술에 대한 확보가 되어있질 않으며, 경제성도 떨어진다는 단점이 있다. 현재 많이 쓰이는 방법 중 탄화수소류의 메탄을 수증기 개질하는 방법이 있다. 메탄 수증기 개질방법은 환경오염물질인 CO나 $CO_2$를 배출한다는 것과 높은 열원이 필요하다 본 연구에서는 C-H결합에너지가 낮아 메탄보다 분해하기 쉬운 부탄의 직접분해로 수소를 생산하고자 한다. 부탄 직접분해는 환경오염물질인 CO나 $CO_2$가 발생되지 않는 장점이 있다. 부탄 분해반응은 $500{\sim}1100^{\circ}C$의 범위에서 이루어 졌으며, 촉매는 탄소계인 카본블랙을 사용하였고, 촉매의 성능을 비교하기 위하여 열분해반응이 동시에 수행되었다.
Ammonia is either a crucial resource of fertilizer production for solving the food problem of mankind or an important energy source as both an eco-friendly hydrogen carrier and a carbon-free fuel. Therefore, nowadays ammonia synthesis and decomposition become promising. Then, a catalyst is required to effectively perform the ammonia synthesis and decomposition. In order to design high-performing as well as cheap novel catalysts for ammonia synthesis and decomposition, it is necessary to test huge amount of catalyst candidates, but it is inevitably time-consuming and expensive to search and analyze using only traditional approaches. Recently, new methods using machine learning which is one of the core technologies of the 4th industrial revolution that can quickly and accurately search high-performance catalysts has been emerging. In this paper, we investigate reaction mechanisms of ammonia synthesis and decomposition, and we described recent research and prospects of machine learning-driven methods that can efficiently find high-performing and economical catalysts for ammonia synthesis and decomposition.
Cu wire catalyst was highly reactive toward catalytic wet peroxide oxidation of the highly refractory 1,4-dioxane. While complete removal of 1,4-dioxane could be achieved with the catalyst, the removed 1,4-dioxane could not totally mineralized into $CO_2$ and $H_2O$. In accordance with the disappearance of 1,4-dioxane, formaldehyde and oxalic acid were formed gradually with reaction time and they went through maxima. At around the time of maximum concentrations of these two intermediates acetaldehyde concentration was increased drastically and showed maximum value. With the disappearance of these three intermediates, formic acid together with ethylene glycol diformate began to increase gradually. The Cu wire catalyst was proved also to be highly stable against deactivation during the reaction.
The NO oxidation process has been applied to improve a removal efficiency of NO included in exhaust gas. In this study, to produce a dry oxidant for the NO oxidation process, the catalytic H2O2 decomposition method was proposed. A variety of the heterogeneous solid-acidic Mn-based catalysts were prepared for the catalytic H2O2 decomposition and the effect of their physico-chemical properties on the catalytic H2O2 decomposition were investigated. The results of this study showed that the acidic sites of the Mn-based catalysts has an influence on the catalytic H2O2 decomposition. The Mn-based catalyst having the abundant acidic sites within the wide temperature range in NH3-TPD shows the best performance for the catalytic H2O2 decomposition. Therefore, the NO oxidation efficiency, using the dry oxidant produced by the H2O2 decomposition over the Mn-based catalyst having the abundant acidic properties under the wide temperature range, was higher than the others. As a remarkable result, the best performances in the catalytic H2O2 decomposition and NO oxidation was shown when the Mn-based Fe2O3 support catalyst containing K component was used for the catalytic H2O2 decomposition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.