DOI QR코드

DOI QR Code

Recent Research Trends of Exploring Catalysts for Ammonia Synthesis and Decomposition

암모니아 합성 및 분해를 위한 촉매 탐색의 최근 연구 동향

  • Jong Yeong Kim (Department of Energy Resources Engineering, Pukyong National University) ;
  • Byung Chul Yeo (Department of Energy Resources Engineering, Pukyong National University)
  • 김종영 (부경대학교 에너지자원공학과) ;
  • 여병철 (부경대학교 에너지자원공학과)
  • Received : 2023.06.19
  • Accepted : 2023.09.09
  • Published : 2023.11.01

Abstract

Ammonia is either a crucial resource of fertilizer production for solving the food problem of mankind or an important energy source as both an eco-friendly hydrogen carrier and a carbon-free fuel. Therefore, nowadays ammonia synthesis and decomposition become promising. Then, a catalyst is required to effectively perform the ammonia synthesis and decomposition. In order to design high-performing as well as cheap novel catalysts for ammonia synthesis and decomposition, it is necessary to test huge amount of catalyst candidates, but it is inevitably time-consuming and expensive to search and analyze using only traditional approaches. Recently, new methods using machine learning which is one of the core technologies of the 4th industrial revolution that can quickly and accurately search high-performance catalysts has been emerging. In this paper, we investigate reaction mechanisms of ammonia synthesis and decomposition, and we described recent research and prospects of machine learning-driven methods that can efficiently find high-performing and economical catalysts for ammonia synthesis and decomposition.

암모니아는 인류의 식량문제를 해결할 수 있는 비료 생산의 주요 원료임과 동시에 무탄소 연료이면서 친환경적인 수소 운반자로서 중요한 에너지원으로 알려져 있다. 그래서 지금까지도 암모니아를 합성하거나 분해하는 기술들이 각광을 받고 있다. 암모니아 합성 및 분해 반응을 촉진시키기 위해서는 반드시 촉매 재료가 필요하다. 고성능 및 값싼 암모니아 합성 및 분해용 신촉매를 설계하기 위해서는 무수히 많은 합성 가능한 촉매 후보군들을 다루어야만 하는데 전통적인 접근법만으로 탐색 및 분석을 하기엔 시간적, 경제적인 비용이 많이 들 수밖에 없다. 최근에 4차 산업혁명의 핵심기술에 속하는 머신러닝을 이용하여 이용하여 고성능 촉매를 빠르고 정확하게 찾을 수 있는 탐색 모델이 개발되어 왔다. 본 연구에서는 암모니아 합성 및 분해용 반응 메커니즘에 대해서 알아보고, 고성능 및 경제적인 암모니아 합성 및 분해 촉매를 효율적으로 탐색할 수 있는 머신러닝 기반 방법에 대한 최신 연구 및 전망을 기술하였다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2022년)에 의하여 연구되었고, 이에 감사드립니다.

References

  1. Ekwurzel, B., Boneham, J., Dalton, M. W., Heede, R., Mera, R. J., Allen, M. R. and Frumho, P. C., "The Rise in Global Atmospheric CO2, Surface Temperature, and Sea Level From Emissions Traced to Major Carbon Producers," Clim. Change, 144, 579-590(2017). https://doi.org/10.1007/s10584-017-1978-0
  2. York, R. and Bell, S. E., "Energy Transitions or Additions? Why a Transition from Fossil Fuels Requires More than the Growth of Renewable Energy," Energy Res. Soc. Sci., 51, 40-43(2019). https://doi.org/10.1016/j.erss.2019.01.008
  3. Hauglustaine, D., Paulot, F., Collins, W., Derwent, R., Sand, M. and Boucher, O., "Climate Benefit of a Future Hydrogen Economy," Commun. Earth Environ., 3, 295(2022).
  4. Bockris, J. O. M., "The Hydrogen Economy: Its History," Int. J. Hydrogen Energy, 38, 6, 2579-2588(2013). https://doi.org/10.1016/j.ijhydene.2012.12.026
  5. Cha, J., Jo, Y. S., Jeong, H., Han, J., Nam, S. W., Song, K. H. and Yoon, C. W., "Ammonia as An Efficient COX-free Hydrogen Carrier: Fundamentals and Feasibility Analyses for Fuel Cell Applications," Appl. Energy, 224, 194-204(2018). https://doi.org/10.1016/j.apenergy.2018.04.100
  6. Navarro, R. M., Pena, M. A. and Fierro, J. L. G., "Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass," Chem. Rev., 107, 3952-3991(2007). https://doi.org/10.1021/cr0501994
  7. Kalamaras, C. M. and Efstathiou, A. M., "Hydrogen Production Technologies: Current State and Future Developments," Conf. Pap. Energy, 1-9(2013).
  8. Zuttel, A., "Hydrogen Storage Methods," Naturwissenschaften, 91, 157-172(2004). https://doi.org/10.1007/s00114-004-0516-x
  9. Aziz, M., Wijayanta, A. T. and Nandiyanto, A. B. D., "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, 13, 3062(2020).
  10. Chen, C., Wu, K., Ren, H., Zhou, C., Luo, Y., Lin, L., Au, C. and Jiang, L., "Ru-Based Catalysts for Ammonia Decomposition: A Mini-Review," Energy Fuels, 35, 11693-11706(2021). https://doi.org/10.1021/acs.energyfuels.1c01261
  11. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. and Winiwarter, W., "How a Century of Ammonia Synthesis Changed the World," Nat. Geosci., 1, 636(2008).
  12. Liu, X., Elgowainy, A. and Wang, M., "Life Cycle Energy Use and Greenhouse Gas Emissions of Ammonia Production from Renewable Resources and Industrial By-products," Green Chem., 22, 5751-5761(2020). https://doi.org/10.1039/D0GC02301A
  13. Humphreys, J., Lan, R. and Tao, S., "Development and Recent Progress on Ammonia Synthesis Catalysts for Haber-Bosch Process," Advanced Energy and Sustainability Research, 2, 2000043 (2021).
  14. Mittasch, A. and Frankenburg, W., "Early Studies of Multicomponent Catalysts," Adv. Catal., 2, 81-104(1950). https://doi.org/10.1016/S0360-0564(08)60375-2
  15. Chen, B. W. J., Xu, L. and Mavrikakis, M., "Computational Methods in Heterogeneous Catalysis," Chem. Rev., 121, 1007-1048 (2021). https://doi.org/10.1021/acs.chemrev.0c01060
  16. Logadottir, A., Rod, T. H., Norskov, J. K., Hammer, B., Dahl, S. and Jacobsen, C. J. H., "The Bronsted-Evans-Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts," J. Catal., 197, 229-231(2001). https://doi.org/10.1006/jcat.2000.3087
  17. Kim, M., Yeo, B. C., Park, Y., Lee, H. M., Han, S. S. and Kim, D., "Artificial Intelligence to Accelerate the Discovery of N2 Electroreduction Catalysts," Chem. Mater., 32, 709-720(2020). https://doi.org/10.1021/acs.chemmater.9b03686
  18. Saidi, W. A., Shadid, W. and Veser, G., "Optimization of High-Entropy Alloy Catalyst for Ammonia Decomposition and Ammonia Synthesis," J. Phys. Chem. Lett., 12, 5185-5192(2021). https://doi.org/10.1021/acs.jpclett.1c01242
  19. Smart, K., "Review of Recent Progress in Green Ammonia Synthesis," Johns. Matthey Technol. Rev., 66, 230-244(2022). https://doi.org/10.1595/205651322X16334238659301
  20. Smil, V., "Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production," MIT Press: Cambridge, MA(2004).
  21. Baranski, A., Zagan, M., Pattek, A., Reizer, A., Christiansen, L. J. and Topsoe, H., "The Activation of Iron Catalyst for Ammonia Synthesis," Stud. Surf. Sci. Catal., 3, 353-364(1979). https://doi.org/10.1016/S0167-2991(09)60223-8
  22. Logadottir, A. and Norskov, J. K., "Ammonia Synthesis over a Ru(0001) Surface Studied by Density Functional Calculations," J. Catal., 220, 273-279(2003). https://doi.org/10.1016/S0021-9517(03)00156-8
  23. Ertl, G., "Primary Steps in Catalytic Synthesis of Ammonia," J. Vac. Sci. Technol. A, 1, 1247-1253(1983). https://doi.org/10.1116/1.572299
  24. Foster, S. L., Perez Bakovic, S. I., Duda, R. D., Maheshwari, S., Milton, R. D., Minteer, S. D., Janik, M. J., Renner, J. N. and Greenlee, L. F., "Catalysts for Nitrogen Reduction to Ammonia," Nat. Catal., 1, 490-500(2018). https://doi.org/10.1038/s41929-018-0092-7
  25. Deng, J., Iniguez, J. A., and Liu, C., "Electrocatalytic Nitrogen Reduction at Low Temperature," Joule 2, 846-856(2018). https://doi.org/10.1016/j.joule.2018.04.014
  26. Liu, S., Liu, Y., Cheng, Z., Tan, Y., Ren, Y., Yuan, T. and Shen, Z., "Catalytic Role of Adsorption of Electrolyte/Molecules as Functional Ligands on Two-Dimensional TM-N4 Monolayer Catalysts for the Electrocatalytic Nitrogen Reduction Reaction," ACS Appl. Mater. Interfaces 13, 40590-40601(2021). https://doi.org/10.1021/acsami.1c10367
  27. Lindley, B. M., Appel, A. M., Krogh-Jespersen, K., Mayer, J. M. and Miller, A. J. M., "Evaluating the Thermodynamics of Electrocatalytic N2 Reduction in Acetonitrile," ACS Energy Lett., 1, 698-704(2016). https://doi.org/10.1021/acsenergylett.6b00319
  28. Ertl, G., "Mechanism and Kinetics of Ammonia Decomposition on Iron," J. Catal., 61, 537-539(1980). https://doi.org/10.1016/0021-9517(80)90403-0
  29. Ganley, J. C., Thomas, F. S., Seebauer, E. G. and Masel, R. I., "A Priori Catalytic Activity Correlations: the Difficult Case of Hydrogen Production from Ammonia," Catal. Letters, 96, 3-4 (2004).
  30. Lucentini, I., Garcia, X., Vendrell, X and Llorca, J., "Review of the Decomposition of Ammonia to Generate Hydrogen," Ind. Eng. Chem. Res., 60, 18560-18611(2021). https://doi.org/10.1021/acs.iecr.1c00843
  31. Lee, S. A., Lee, M. G. and Jang, H. W., "Catalysts for Electrochemical Ammonia Oxidation: Trend, Challenge, and Promise," Sci. China Mater., 65, 3334-3352(2022). https://doi.org/10.1007/s40843-022-2111-2
  32. Xi, X., Fan, Y., Zhang, K., Liu, Y., Nie, F., Guan, H. and Wu, J., "Carbon-free Sustainable Energy Technology: Electrocatalytic Ammonia Oxidation Reaction," Chem. Eng. J., 435, 134818(2022).
  33. Bunce, N. J. and Bejan, D., "Mechanism of Electrochemical Oxidation of Ammonia," Electrochim. Acta, 56, 8085-8093(2011). https://doi.org/10.1016/j.electacta.2011.07.078
  34. Oswin, H. G. and Salomon, M., "The Anodic Oxidation of Ammonia at Platinum Black Electtrofes in Aqueous Koh Electrolyte," Can. J. Chem., 41, 1686-1694(1963). https://doi.org/10.1139/v63-243
  35. Gerischer, H. and Mauerer, A., "Untersuchungen Zuranodischen Oxidation Vonammoniak An Platin An Platin-elektroden," J. Electroanal. Chem. Interfacial Electrochem., 25, 421-433(1970). https://doi.org/10.1016/S0022-0728(70)80103-6
  36. Pillai, H. S. and Xin, H., "New Insights into Electrochemical Ammonia Oxidation on Pt(100) from First Principles," Ind. Eng. Chem. Res., 58, 10819-10828(2019). https://doi.org/10.1021/acs.iecr.9b01471
  37. Yeo, B. C., Nam, H., Nam, H., Kim, M.-C., Lee, H. W., Kim, S.-C., Won, S. O., Kim, D., Lee, K.-Y., Lee, S. Y. and Han, S. S., "High-throughput Computational-experimental Screening Protocol for the Discovery of Bimetallic Catalysts," Npj Comput. Mater., 7, 137(2021).
  38. Noh, J., Back, S., Kim, J. and Jung, Y., "Active Learning with Non-ab Initio Input Features Toward Efficient CO2 Reduction Catalysts," Chem. Sci., 9, 5152(2018).
  39. Panapitiya, G., Avendano-Franco, G., Ren, P., Wen, X., Li, Y. and Lewis, J. P., "Machine-learning Prediction of CO Adsorption in Thiolated, Ag-alloyed Au Nanoclusters," J. Am. Chem. Soc., 140, 17508-17514(2018). https://doi.org/10.1021/jacs.8b08800
  40. Ma, X., Li, Z., Achenie, L. E. and Xin, H., "Machine-learning-augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening," J. Phys. Chem. Lett., 6, 3528-3533(2015). https://doi.org/10.1021/acs.jpclett.5b01660
  41. Toyao, T., Suzuki, K., Kikuchi, S., Takakusagi, S., Shimizu, K. and Takigawa, I., "Toward Effective Utilization of Methane: Machine Learning Prediction of Adsorption Energies on Metal Alloys," J. Phys. Chem. C, 122, 8315-8326(2018).
  42. O'Connor, N. J., Jonayat, A. S. M., Janik, M. J. and Senftle, T. P., "Interaction Trends Between Single Metal Atoms and Oxide Supports Identified with Density Functional Theory and Statistical Learning," Nat. Catal. 1, 531-539(2018). https://doi.org/10.1038/s41929-018-0094-5
  43. Zhao, Z.-J. and Gong, J., "Catalyst Design via Descriptors," Nat. Nanotechnol., 17, 563-564(2022). https://doi.org/10.1038/s41565-022-01120-5
  44. Xie, P., Yao, Y., Huang, Z., Liu, Z., Zhang, J., Li, T., Wang, G., Shahbazian-Yassar, R., Hu, L. Wang, C., "High-efficient Decomposition of Ammonia Using High-entropy Alloy Catalysts," Nat. Commun., 10, 4011(2019).
  45. Saidi, W. A., Shadid, W. and Castelli, I. E., "Machine-learning Structural and Electronic Properties of Metal Halide Perovskites Using a Hierarchical Convolutional Neural Network," Npj Comput. Mater., 6, 36(2020).