• Title/Summary/Keyword: 초임계 사이클

Search Result 34, Processing Time 0.021 seconds

A Study on the Power Generation Using Supercritical Carbon Dioxide (초임계 이산화탄소를 활용한 발전에 대한 연구)

  • NOH, SANGGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.297-302
    • /
    • 2019
  • In this paper, the power generation efficiency increase has been studied for a Rankine cycle using both supercritical carbon dioxide as a working fluid and LNG as a coolant with PRO/II with PROVISION release 10.0 from Aveva company. Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle using LNG cold heat. Power generation efficiency was increased from 24.82% to 57.76% when using LNG as a coolant for supercritical carbon dioxide power generation cycle.

Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO2 as Working Fluid (초임계 이산화탄소를 작동유체로 하는 인쇄기판형 열교환기의 형상변수에 따른 전열성능 수치모사)

  • Jeon, Sang Woo;Ngo, Ich-long;Byon, Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.737-744
    • /
    • 2016
  • The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical $CO_2$ power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical $CO_2$ as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE) (전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출)

  • Park, Sungho;Cha, Jaemin;Kim, Joonyoung;Shin, Junguk;Yeom, Choongsub
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • The economic analysis for the power plant developed in the conceptual design phase is becoming more important and, research on process optimization for process development that meets the target economic is actively carried out. In the filed of power generation systems, economic assessment methods to predict the levelized cost of electricity (LCOE) has been widely applied for comparing economic effect quantitatively. In this paper, the platform that design criteria of key component required to optimize economic of power cycle can be calculated reversely was established roughly and design criteria of the key equipment (Compressor, turbine, heat exchanger) required to meet the target LCOE (the LCOE of supercritical steam Rankine cycle) was derived when the supercritical $CO_2$ power cycle is applied to the coal-fired power plant.

Design and Evaluation of Small-scale Supercritical Carbon Dioxide System with Solar Heat Source (태양열 적용을 위한 소형 초임계 이산화탄소 실험설비 설계 및 평가)

  • Choi, Hundong;So, Wonho;Lee, Jeongmin;Cho, Kyungchan;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • This paper focuses on the design of a 12-kW small-scale supercritical CO2 test loop. A theoretical study, stabilization, and optimization of carbon dioxide were carried out with the application of a solar heat source based on solar thermal data in Pohang. The thermodynamic cycle of the test facility is a Rankine cycle (transcritical cycle), which contains liquid, gas, and supercritical CO2. The system is designed to achieve 6.98% efficiency at a maximum pressure of 12 MPa and a maximum temperature of 70℃. In addition, the optimum turbine inlet temperature and pressure were calculated to increase the cycle efficiency, and the application of an internal heat exchanger (IHX) was simulated. It was found that the maximum efficiency increases to 18.75%. The simulation confirmed that the efficiency of the cycle is 6.7% in May and 6.26% in June.

Research in Transcritical R744 at ACRC, University of lllinose at Urbana-Champaign

  • Bullard, C.;Hrnjak, P.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.31 no.7
    • /
    • pp.32-44
    • /
    • 2002
  • 1989년 프레온계 냉매의 대체 가능한 물질로서 $CO_2$재 출연하게 되었고, 그 이후 관련 연구는 점차 증가하였다. 1996년 북미 지역에서 $CO_2$의 연구는 일리노이 대학내 ACRC (Air Conditioning and Refrigeration Center)에서 최대로 시작되었다. 연구비의 90%는 산업체에 의해 지원되었고, 나머지는 미국 정부에 의해 지원되었다. 본 고는 자동차 및 가정용 에어컨 및 열펌프 시스템 및 구성부품 개선에 대한 전반적인 연구활동에 관해 기술하였다. 또한 시스템 성능 비교 결과는 열전달, 압력강하, 사이를 변환,냉매 분해에 대한 연구 지침을 제시하였고, 지속적인 연구 노력을 통하여 천연냉매를 이용하여 간접적인 지구온난화 가스 방출을 최소화하기 위한 시스템 효율을 증가시키고 빈다. $CO_2$의 고유 특징인 초임계 $CO_2$사이클, $CO_2$의 열역학 및 전달 물성치를 통한 효율 개선, 내부 열교환을 통한 사이클 성능 개선방안도 기술되었다.

  • PDF

Preliminary Design of the Supercritical $CO_2$ Brayton Cycle Energy Conversion System (초임계 이산화탄소 Brayton 에너지 전환계통 예비설계)

  • Cha, Jae-Eun;Eoh, Jae-Hyuk;Lee, Tae-Ho;Sung, Sung-Hwan;Kim, Tae-Woo;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3181-3188
    • /
    • 2008
  • The supercritical $CO_2$ Brayton cycle energy conversion system is presented as a promising alternative to the present Rankine cycle. The principal advantage of the S-$CO_2$ gas is a good efficiency at a modest temperature and a compact size of its components. The S-$CO_2$ Brayton cycle coupled to a SFR also excludes the possibilities of a SWR (Sodium-Water Reaction) which is a major safety-related event, so that the safety of a SFR can be improved. KAERI is conducting a feasibility study for the supercritical carbon dioxide (S-$CO_2$) Brayton cycle power conversion system coupled to KALIMER(Korea Advanced LIquid MEtal Reactor). The purpose of this research is to develop S-$CO_2$ Brayton cycle energy conversion systems and evaluate their performance when they are coupled to advanced nuclear reactor concepts of the type under investigation in the Generation IV Nuclear Energy Systems. This paper contains the research overview of the S-$CO_2$ Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system.

  • PDF

Introduction to supercritical CO2 power conversion system and its development status (초임계 CO2 발전시스템 소개 및 개발동향)

  • Lee, Jeong Ik;Ahn, Yoonhan;Cha, Jae Eun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.95-103
    • /
    • 2014
  • During the international effort to develop the next generation nuclear reactor technologies, many new power cycle concepts were derived to improve efficiency and reduce the capital cost. Among many innovative power cycles, it was identified that the supercritical $CO_2$ (S-$CO_2$) Brayton cycle technology has a big potential to outperform the existing steam cycle and eventually replace it. The S-$CO_2$ cycle achieves high efficiency with very compact size, which is the ultimate advantage for a power cycle to have. The S-$CO_2$ cycle has a great potential not only for the future nuclear applications but also for general heat sources such as coal, natural gas, and concentrated solar. In this paper, a brief introduction to the S-$CO_2$ power cycle technologies will be first provided, and a short summary of current research and development status of the power cycle technology around the world will be followed. Especially the research works performed by KAIST, KAERI and several related research institutions in Korea will be reviewed in more detail, since they have recently developing a strong infrastructure to test these ideas by constructing a demonstration facility while producing many innovative ideas to improve and realize the concept.

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid (열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.699-707
    • /
    • 2017
  • This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.

Experimental study on the performance of heat pump system using $CO_2$ (이산화탄소용 열펌프시스템의 성능특성에 관한 실험적 연구)

  • Jang, Seong-Il;Jeon, Min-Ju;Yu, Tae-Guen;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.55-56
    • /
    • 2006
  • 냉매 충전량과 이차유체의 입구조건은 $CO_2$용 열펌프시스템의 성능실험에서 중요한 제어변수이다. 따라서, 열펌프사이클의 적용과 난방성능 향상을 위해 제어변수의 특성을 조사하는 것이 필요하다. 본 논문에서, $CO_2$용 열펌프 사이클의 성능 실험은 여러 가지 냉매 충전량에서 이차유체 입구조건에 변화를 주어 수행 되었다. 실험결과, 난방COP는 냉매 충전량이 증가함에 따라 1158g의 냉매 충전량에서 최대가 되었다가 감소하는 경향이 나타나며, 이는 COP가 최대가 되는 냉매충전량이 존재함을 나타낸다. 또한, 난방성능은 가스쿨러내 이차유체의 질량유량의 증가에 따라 증가하였다. 가스냉각기내 2차유체의 입구은도가 $10^{\circ}C$에서 $40^{\circ}C$로 증가하면, 난방용량, 압축일량, 토출압력은 각각 -8.57%, -35.89%, 32.78%로 변화했으며, 증발기 2차유체의 입구 온도가 감소하였을 때 난방COP는 감소하는 경향을 보였다.

  • PDF

Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO2 Power Generation (부분 유입 노즐을 적용한 초임계 이산화탄소 발전용 초고속 터보발전기 개발 연구)

  • Cho, Junhyun;Shin, Hyung-ki;Kang, Young-Seok;Kim, Byunghui;Lee, Gilbong;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2017
  • A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world's first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.