DOI QR코드

DOI QR Code

Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE)

전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출

  • Park, Sungho (Plant engineering department, Institute for Advanced Engineering) ;
  • Cha, Jaemin (Plant engineering department, Institute for Advanced Engineering) ;
  • Kim, Joonyoung (Plant engineering department, Institute for Advanced Engineering) ;
  • Shin, Junguk (Plant engineering department, Institute for Advanced Engineering) ;
  • Yeom, Choongsub (Plant engineering department, Institute for Advanced Engineering)
  • 박성호 (고등기술연구원 플랜트 엔지니어링본부) ;
  • 차재민 (고등기술연구원 플랜트 엔지니어링본부) ;
  • 김준영 (고등기술연구원 플랜트 엔지니어링본부) ;
  • 신중욱 (고등기술연구원 플랜트 엔지니어링본부) ;
  • 염충섭 (고등기술연구원 플랜트 엔지니어링본부)
  • Received : 2017.09.12
  • Accepted : 2017.10.22
  • Published : 2017.12.31

Abstract

The economic analysis for the power plant developed in the conceptual design phase is becoming more important and, research on process optimization for process development that meets the target economic is actively carried out. In the filed of power generation systems, economic assessment methods to predict the levelized cost of electricity (LCOE) has been widely applied for comparing economic effect quantitatively. In this paper, the platform that design criteria of key component required to optimize economic of power cycle can be calculated reversely was established roughly and design criteria of the key equipment (Compressor, turbine, heat exchanger) required to meet the target LCOE (the LCOE of supercritical steam Rankine cycle) was derived when the supercritical $CO_2$ power cycle is applied to the coal-fired power plant.

개념설계 단계에서 개발 공정에 대한 경제적 타당성 분석에 대한 중요성이 대두되고 있으며, 목표 경제성에 부합하는 공정개발을 위한 공정 최적화에 대한 연구도 활발히 진행되고 있다. 발전 시스템 분야에서는 전력 단가(Levelized cost of electricity, LCOE)를 예측하여 경제적 효과를 정량적으로 비교 분석하는 평가 방법이 많이 활용되고 있다. 본 연구에서는 목표 전력 단가에 부합한 발전 시스템을 설계하기 위해서 요구되는 핵심기기의 설계 조건을 역산출 할 수 있는 플랫폼을 구축하였으며 초임계 이산화탄소 발전 시스템이 석탄 화력에 적용될 경우, 목표 전력 단가(초임계 증기 랭킨 사이클 발전 단가, $ 85.4 /kWh)를 충족하기 위해 요구되는 주요 핵심기기(압축기, 터빈, 열교환기) 등의 설계 지표 기준을 도출하였다. 터빈의 등엔트로피 효율이 86%인 경우, 주압축기 효율은 88% 이상 설계되어야 한다. 만약 터빈의 등엔트로피 효율이 88%로 설계된 경우, 주압축기 효율은 82%까지 완화하여 설계가 가능하다. End seal 부분에서 누설량을 0.24% 수준으로 유지하고, 열교환기의 경우 cold side 출구측 온도가 $92{\sim}97^{\circ}C$, 열용량은 2650 ~ 2680 MWth로 설계한다면 목표 전력단가를 충족시킬 수 있을 것으로 확인되었다.

Keywords

References

  1. http://www.keei.re.kr/keei/download/focus/ef1512/ef1512_30. pdf (accessed Sep. 2017).
  2. Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J-M., and Bouallou, C., "Pre-combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for $CO_2$ Capture," Appl. Therm. Eng., 30, 53-62 (2010). https://doi.org/10.1016/j.applthermaleng.2009.05.005
  3. Nie, Z., Korre, A., and Durucan, S., "Life Cycle Modelling and Comparative Assessment of the Environmental Impacts of Oxy-Fuel and Post-Combustion $CO_2$ Capture, Transport and Injection Processes," Energy Procedia., 4, 2510-2517 (2011). https://doi.org/10.1016/j.egypro.2011.02.147
  4. Fu, C., and Gundersen, T., "Heat Integration of an Oxy-Combustion Process for Coal Fired Power Plants with $CO_2$ Capture by Pinch Analysis," Chem. Eng. Trans., 21, 181-187 (2010).
  5. Fu, C., and Gundersen, T., "Using Exergy Analysis to Reduce Power Consumption in Air Separation Units for Oxy-Combustion Processes," Energy, 44(1), 60-68 (2012). https://doi.org/10.1016/j.energy.2012.01.065
  6. Soundararajan, R., Anantharaman, R., and Gundersen, T., "Design of Steam Cycles for Oxy-Combustion Coal based Power Plants with Emphasis on Heat Integration," Energy Procedia, 51, 119-126(2014). https://doi.org/10.1016/j.egypro.2014.07.013
  7. Liang, Z., Fu, K., Idem, R., and Tontiwachwuthikul, P., "Review on Current Advances, Future Challenges and Consideration Issues for Post-Combustion $CO_2$ Capture using the Amine-Based Absorbents," Chinese J. Chem. Eng., 24(2), 278-288 (2016). https://doi.org/10.1016/j.cjche.2015.06.013
  8. Nwaoha, C., Supap, T., Idem, R., Saiwan, C., Tontiwachwuthikul, P., Al-marri, M. J., and Benamor, A., "Advancement and New Perspectives of using Formulated Reactive Amine Blends for Post-Combustion Carbon Dioxide Capture Technologies," Petroleum, 3(1), 10-36 (2017). https://doi.org/10.1016/j.petlm.2016.11.002
  9. Wang, M., Joel, A. S., Ramshaw, C., Dag, E., Musa, N. M., "Process Intensification for Post-Combustion $CO_2$ Capture with Chemical Absorption: A Critical Review," Appl. Energy, 158, 275-291 (2015). https://doi.org/10.1016/j.apenergy.2015.08.083
  10. Martinez, I., Grasa, G., Parkkinen, J., Tynjala, T., Hyppanen, T., Murillo, R., and Romano, M., "Review and Research Needs of Ca-Looping Systems Modeling for Post-Combustion $CO_2$ Capture Applications," Int. J. Greenhouse Gas Control, 50, 271-304 (2016). https://doi.org/10.1016/j.ijggc.2016.04.002
  11. Liu, J., "Process Design of Aqueous Ammonia Based Post-Combustion $CO_2$ Capture," J. Taiwan Inst. Chem. Eng., 78, 240-246 (2017). https://doi.org/10.1016/j.jtice.2017.06.008
  12. Ferrara, G., Lanzini, A., Leone, P., Ho, M. T., and Wiley, D. E., "Exergetic and Exergoeconomic Analysis of Post-Combustion $CO_2$ Capture using MEA-solvent Chemical Absorption," Energy, 130, 113-128 (2017). https://doi.org/10.1016/j.energy.2017.04.096
  13. Zhou, L., Xu, G., Zhao, S., Xu, C., and Yang, Y., "Parametric Analysis and Process Optimization of Steam Cycle in Double Reheat Ultra-Supercritical Power Plants," Appl. Thermal Eng., 99, 652-660 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.047
  14. Nomoto, H., "Advanced Ultra-Supercritical Pressure (A-USC) Steam Turbines and Their Combination with Carbon Capture and Storage Systems (CCS)," Advances in Steam Turbines for Modern Power Plants, 501-519 (2017).
  15. Si, N., Zhao, Z., Su, S., Han, P., Sun, Z., Xu, J., Cui, X., Hu, S., Wang, Y., Jiang, L., Zhou, Y., Chen, G., and Xiang, J., "Exergy Analysis of a 1000MW Double Reheat Ultra-Supercritical Power Plant," Energy Conversion and Manage., 147(1), 155-165 https://doi.org/10.1016/j.enconman.2017.05.045
  16. Zhang, K., Zhang, Y., Guan, Y., and Zhang, D., "Boiler Design for Ultra-Supercritical Coal Power Plants," Ultra-supercritical Coal Power Plants, 104-130 (2013).
  17. Moullec, Y. L., "Conceptual Study of a High Efficiency Coal Fired Power Plant with $CO_2$ Capture using a Supercritical $CO_2$ Brayton Cycle," Energy, 49, 32-46 (2013). https://doi.org/10.1016/j.energy.2012.10.022
  18. Park, S. H., Rhim, D. R., Yeom, C. S., Cha, J. M., Shin, J. U., Lee, C. S., "Thermo-Economic Evaluation of 500MW Class Coal Fired Power Plant Combined with Supercritical Carbon Dioxide Brayton Cycle," J. Energy & Climate Change, 11(1), 1-12 (2016).
  19. Driscoll, M. J., "Supercritical $CO_2$ Plant Cost Assessment," Interim Topical Report (2014).