• Title/Summary/Keyword: 초음파 파워

Search Result 49, Processing Time 0.029 seconds

Development of the calibration procedure of the reference sound source and case study on the uncertainty evaluation (기준음원의 교정 절차 개발 및 불확도 평가 사례)

  • Jae-Gap Suh;Wan-Ho Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.344-350
    • /
    • 2024
  • A Reference Sound Source (RSS) is an important standard device employed in measuring sound power. The specifications of RSS is specified in international standards, and it is classified as a major calibration item in the field of acoustic metrology. Since the output power of RSS is affected by the supply voltage, each country needs to secure its own calibration service system. In this study, a procedure for calibrating a RSS is established based on the reverberant room conditions and uncertainty evaluation is conducted. Basically, the calibration procedure can apply a precision measurement process of acoustic power, and here, the measurement method using the reverberation chamber of ISO 3741 is applied. For this purpose, a measurement system is constructed, measurements are conducted with two types of RSS, and measurement uncertainty is evaluated. Through measurement examples, it is confirmed that the non-uniformity of the sound pressure distribution in the reverberation room and the volume measurement uncertainty contributed significantly to the overall uncertainty. Additionally, the influence of input voltage is experimentally examined to examine the uncertainty contribution that can be reflected in acoustic power measurements.

Extraction Method of Ultrasound Spectral Information using Phase-Compensation and Weighted Averaging Techniques (위상 보상과 가중치 평균을 이용한 의료 초음파 신호의 주파수 특성 추출 방법)

  • Kim, Hyung-Suk;Yi, Joon-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.959-966
    • /
    • 2010
  • Quantitative ultrasound analysis provides fundamental information of various ultrasound parameters using spectral information of the short-gated radiofrequency(RF) data. Therefore, accurate extraction of spectral information from backscattered RF signal is crucial for further analysis of medical ultrasound parameters. In this paper, we propose two techniques for calculating a more accurate power spectrum which are based on the phase-compensation using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio(SNR). The simulation results demonstrate that the proposed method estimates better results with 10% smaller estimation variances compared to the conventional methods.

Characteristics Variation Analysis by Shape of Piezoelectric Ultrasonic Transducer with Non-Uniform Thickness (두께 불균일 압전 초음파 트랜스듀서의 형태에 따른 특성변화 해석)

  • Kim, Dong-Hyun;Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.271-278
    • /
    • 2008
  • The electro-mechanical characteristics were theoretically analyzed for the wideband ultrasonic transducer made of non-uniform thickness piezoelectric vibrator. This paper proposes a combination of exponential functions which describes the thickness variation along the length of the vibrator to derive the input admittance and power transfer function of the transducer. The bandwidth and the power transfer function of the transducer were investigated while the lateral shape of the vibrator changes. The results showed there is an optimum shape for the wideband characteristics of the transducer, and the bandwidth has increased up to over 100% as the ratio of minimum value of thickness to maximum value decreases. However, the power transfer function had a downward trend as the ratio of thickness decreases. Also we confirmed that even though the value of transfer function increases as the length of the piezoelectric vibrator increases, the shape providing wideband characteristics is very limited. It means that precision processing is required to manufacturing a wideband ultrasonic transducer with high efficiency.

Observation with Calcifications of Breast Tissue Phantoms Using Acoustic Resonance (공명현상을 이용한 유방조직 팬텀의 석회화 관찰)

  • Ha, Myeung-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Diagnosis of breast ultrasound is better than mammography in the early detection of breast cancer, but, it is difficult to detect microcalcification. We studied on detection for calcification of breast tissue using acoustic resonance and power doppler with 7.5 MHz linear probe in breast ultrasound. We first constructed breast tissue phantom made of gelatin and saw breast, and then observed calcification by the change of external vibration. Calcification injected breast tissue phantom visualized the difference for brightness and region of color in ROI regions of power doppler. Acoustic resonance almost never visualized in low frequency regions, plateau constituted in about 300-400 Hz and colors vanished according to the increase of frequency.

  • PDF

A Study on Changes in Body Surface Temperature and Thermal Effect According to Ultrasound Mode (초음파 진단모드에 따른 체표면 온도변화와 열효과에 관한 고찰)

  • Yang, Sung-Hee;Lee, Jin-Soo
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • Recently, as the number of high-risk pregnancies increases, the use of new techniques such as Doppler, which have higher acoustic power than in the past, has been increasingly used in prenatal diagnosis and guidelines have been set up by various organizations to prevent excessive exposure. Therefore, in this study, we tried to investigate the temperature change of the body surface for each test mode according to the long time ultrasound examination and to examine the exposure time which is not influenced by the thermal effect. B mode, C mode, and PD mode according to time, and the temperature difference between exposed and unexposed sites were compared. As a result, the B mode showed a significant difference in the temperature change from 10 minutes, 50 minutes after exposed, 20 minutes from the C mode, and 30 minutes from the PD mode (p<0.01). In all three modes, the temperature difference was different (p<0.000), and PD mode was the most sensitive to temperature change. Also, it was found that the temperature rise time was shortened with the increase of the ultrasonic exposure time. Therefore, it is recommended that ultrasonography to observe the embryo or fetus should be used only for diagnostic purposes, avoiding excessive test time.

Precise Estimation of Nonlinear Parameter in Pulse-Like Ultrasonic Signal (펄스형 초음파 신호에서 비선형 파라미터의 정밀 추정)

  • Ha, Job;Jhang, Kyung-Young;Sasaki, Kimio;Tanaka, Hiroaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Ultrasonic nonlinearity has been considered as a solution for the detection of microcracks or interfacial delamination in a layered structure. The distinguished phenomenon in nonlinear ultrasonics is the generation of higher-order harmonic waves during the propagation. Therefore, in order to quantify the nonlinearity, the conventional method measures a parameter defined as the amplitude ratio of a second-order harmonic component and a fundamental frequency component included in the propagated ultrasonic wave signal. However, its application In field inspection is not easy at the present stage because no standard methodology has yet been made to accurately estimate this parameter. Thus, the aim of this paper is to propose an advanced signal processing technique for the precise estimation of a nonlinear ultrasonic parameter, which is based on power spectral and bispectral analysis. The method of estimating power spectrum and bispectrum of the pulse-like ultrasonic wave signal used in the commercial SAM (scanning acoustic microscopy) equipment is especially considered in this study The usefulness of the proposed method Is confirmed by experiments for a Newton ring with a continuous air gap between two glasses and a real semiconductor sample with local delaminations. The results show that the nonlinear parameter obtained tv the proposed method had a good correlation with the delamination.

Manufacture of Flow Phantom with Stenosis and Imaging Evaluation of Power Doppler (혈관협착팬텀의 제작 및 파워도플러의 영상 평가)

  • Park, Hee-Young;Bae, Jong-Rim;Kim, Jeong-Koo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.732-739
    • /
    • 2009
  • Flow phantom with stenosis was manufactured using an auto-injector to obtain angiostenotic flow information and quality assurance (QA) for ultrasound diagnostic instrumentation. Effectiveness of manufactured flow phantom with stenosis was investigated with power Doppler that was known to have diagnostic efficiency for angiostenosis. The flow phantom with stenosis was manufactured to 70% stenosis with 8 mm and 2.4 mm silicon tube, and silicone tube was covered with gelatin that has acoustic characteristics similar to soft tissue. When the linear transducer was used for measurement, the estimated diameter of normal vessel was measured lower than that of normal value, and the estimated diameter of stenosed vessel was measured higher than that of normal value. The measured parameters were not affected except for the radical conditions such as gain of 60%, PRF of 3000 Hz, use of maximal filter or angle. In addition, when the convex transducer was used for measurement, measurement parameters were affected by gain, PRF, filter, and angle. Therefore it is expected that flow phantom with stenosis manufactured with an auto-injector will be utilized effectively for QA of angiostenotic diagnosis.

The Piezoelectric Ultrasonic Cutter Using A Transverse Vibration Mode (횡 진동 모드를 이용한 압전 초음파 커터)

  • Lee, Won-Hee;Kang, Chong-Yun;Kim, Hyun-Jai;Ju, Byeong-Kwon;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.37-38
    • /
    • 2006
  • 본 연구에서는 압전체의 횡 진동모드를 이용한 압전 초음파 진동자를 설계 분석하였다. 이전의 란쥬반 진동자는 진동을 얻기 위하여, 복수의 원판 또는 사각판 형태의 압전 세라믹을 서로 반대 방향으로 분극하여 마주 보도록 설치한 후 전기적으로 병렬로 연결하고 상단 및 하단에 금속부을 부착하여 전체를 볼트로 조인 복잡한 구조와 큰 출력 파워를 갚는 반면, 본 연구에서는 판상형의 압전소자와 일체형 금속진동체를 이용하여 기계적 출력 파워 조절이 용이한 구조의 압전 진동자를 고안하여, 압전진동자의 횡 진동 모드를 이용함으로써 신뢰성과 정확도가 높고 진동효율이 최대가 되도록 설계하였다. 설계 개발된 압전 진동자는 진동의 크기 조절이 용이하여 일반 진동자 뿐 만 아니라, 외과 및 안과 수술에 있어서 인체조직이나 각막상피의 활성화를 유지한 상태에서 안전하게 절개 및 분리 시술용 진동자로 사용 할 수 있는 이점이있다. 압전 진동자는 유한요소법 시뮬레이션 프로그램 (ATILA 5.2.4)을 이용하여 설계를 하였으며 압전소자의 두께는 각각 0.2 mm, 0.5 mm로 제작하여 시뮬레이션 결과와 제작된 샘플의 특성을 비교하였고, 변위측정은 칼날을 결합 한 상태에서 공진 주파수대역 부근 주파수별로 측정 비교하였다.

  • PDF

Comparison of Conventional Solvent Extraction, Microwave-Assisted Extraction, and Ultrasound-Assisted Extraction Methods for Paclitaxel Recovery from Biomass (바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출, 마이크로웨이브를 이용한 추출, 초음파를 이용한 추출 방법 비교)

  • Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.273-279
    • /
    • 2020
  • In this study, conventional solvent extraction (CSE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE) were compared for the recovery of paclitaxel from biomass. As a result of investigating the effect of the extraction solvent type (acetone, chloroform, ethanol, methanol, methylene chloride), methanol was the most suitable for all extraction methods. In the case of MAE and UAE using methanol, most of the paclitaxel (> 95%) was recovered by only one extraction. The recovery rate of paclitaxel increased with the increase of extraction temperature (25-45 ℃), microwave power (50-150 W), and ultrasonic power (180-380 W) for MAE and UAE. In addition, SEM analysis showed that the biomass surface structure was slightly corrugated in CSE, while in the MAE and UAE, it was very rough and destroyed by strong impact.

Sono-electrochemical Determination of Uric Acid (요산의 초음파 전기화학적 정량)

  • Cho Hyung-hwa;Bae Zun-ung
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.232-234
    • /
    • 2000
  • Determination of uric acid by electrochemical method using ultrasonic stimulation has been investigated. Effects of sonication power, sonication time, pH of the solution and temperature were studied to obtain the optimal analytical conditions. The stability of the electrode was also examined. The optimal conditions for the sonovoltammetric determination of uric acid were as follows: temperature, $25.0^{\circ}C$ pH 7.0; sonication power, $20W/cm^2$. The calibration curve for the determination of uric acid by sono-LSV was linear over the range of$8.0{\times}10^{-6}\~5.0\times10^{-4}M$ and the limit of detection was $6.5\times10^{-6}M$.