• Title/Summary/Keyword: 초음파탐상검사

Search Result 141, Processing Time 0.023 seconds

Consideration on the Experimental Measurement of Flaw Height of Welds by Ultrasonic Testing (초음파(超音波) 탐상법(探傷法)에 의(依)한 용접부(熔接部)의 결함(缺陷)높이 측정(測定)에 관한 연구(硏究))

  • Ahn, Il-Young;Yin, Tong-Kyu;Han, Eung-Kyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.2 no.1
    • /
    • pp.10-16
    • /
    • 1982
  • This study was carried out to measure the flaw height of welds in consideration of the effective probe angle in ultrasonic oblique detection. Specimens with inserted artificial flaws were made and flaw heights were estimated from detecting these specimens. Two different methods were applied to estimate flaw heights. From the result of the experiment, flaw height could be measured within the accuracy of 15% percent error and the difference between the probe distance method and beam path method is about 5% relatively small. It is considered that the results obtained this experimental study could be helpful informal ions for measuring flaw height.

  • PDF

A Study on Construction of Automatic Inspection System for Welding Flaws (용접결함 검사 자동화 시스템 구축에 관한 연구)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.37-42
    • /
    • 2007
  • The purpose of this research is stability estimation of plant structure through classification and recognition about welding flaw in SWP(Spiral Welding Pipe). And, In this research, we used nondestructive test based on ultrasonic test as inspection method, and made up 2-axes inspection robot in order to control of ultrasonic probe on the SWP surface, and programmed to image processing and probabilistic neural network(PNN) classifying code by MATLAB programming. Through this process, we proved efficiency on the system of SWP stability Estimation.

Measurements of Ultrasonic Velocity and Attenuation by Signal Processing Techniques in Time and Frequency Domains (시간 및 주파수 영역에서의 신호 처리 기술에 의한 초음파 속도와 감쇠의 측정)

  • Jang, Young-Su;Kim, Jin-Ho;Jeong, Hyun-Jo;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.118-128
    • /
    • 1999
  • There are many ultrasonic measurement methods that are used in nondestructive testing applications. Some typical applications include material property determination, microstructural characterization. and flaw detection. Ultrasonic parameters such as velocity and attenuation are most commonly required in these applications. The accuracy and repeatability of testing results are dependent on both the hardware used to generate and receive the ultrasonic waves and on the analysis software for calculating these parameters. In this study, five analysis algorithms were implemented on a computer for measuring wave speed in a pulse echo. immersion testing configuration. In velocity measurements comparisons were made between the overlap. cross-correlation. Fourier transform. Hilbert transform, wavelet transform algorithms. Velocity measurement was applied to an isotropic steel sample using the five analysis algorithms. Frequency-dependent phase/group velocity and attenuation were also measured using the Fourier transform and wavelet transform algorithms on a composite laminate containing voids.

  • PDF

The Study on Scattered Far-Field Analysis of Ultrasonic SH-Wave Using Boundary Element Method (경계요소법을 이용한 SH형 초음파 원거리 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.333-339
    • /
    • 1999
  • It is well recognized that ultrasonic technique is one of the most common and reliable nondestructive evaluation techniques for quantitative estimation of defects in structures. For the quantitative and accurate estimation of internal defects. the characteristics of scattered ultrasonic wavefields must be understood. In this study. the scattered near-field and far-field due to a circular cavity embedded in infinite media subjected to incident SH-waves were calculated by the boundary element method. The frequency response of the scattered ultrasonic far-field was transformed into the time-domain signal by obtaining its inverse Fourier transform. It was found that the amplitude of time-domain signal decreases and its time delay increases as the distance between the detecting point of ultrasonic scattered field and the center of internal cavity increases.

  • PDF

A study for detection of melt flow zone about polyethylene butt fusion joints (폴리에틸렌 배관 버트융착부 열용융거리 측정에 대한 연구)

  • Kil, Seonghee;Kim, Younggu;Jo, NYoungdo;Lee, Yeonjae
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2016
  • Polyethylene pipes has useful benefits which are anti-corrosive and flexible material, so it is used to gas pipes but also class 3 water pipes of nuclear power plant, process pipes of petrochemical plant and chemical plant. So the usage of polyethylene pipes is widely increased. But it has been limited for the usage of polyethylene, because it can not be directly detected to fusion joints by using non destructive evaluation. Polyethylene pipes are connected by two methods, one is butt fusion and the other is electrofusion. Butt fusion is widely used to connecting the pipes. It is proposed to method for determining the reliability of joints in this study that is detection of the melt flow zone at fusion joints. In this study, middle density polyethylene is used, outside diameter of the test specimen is 225mm and thickness is 20.5mm. Speed of ultrasonic of this test specimen is 2,200m/s. Test specimens were fabricated by varying the heating time which means from 0% to 130% applying time through heating plate to polyethylene for detecting melt flow zone. Also 4 additional test specimens were made, one was made that not scrapping attached surface of pipes but applying 100% of the proper heating time and the others were made to include of soil, gravel and vinly tape paper at fusion joints, that were also applied 100% of proper heating time. Ultrasonic testing to measure the melt flow zone of 20 test specimens was conducted by using 3.5MHz and 5.0MHz ultrasonic probes and melt flow zone measuring was conducted to three times at different point to one specimen. To differentiate the melt flow zone signal, post image processing was equally conducted to all test results and image levels, contrast, sharpen, threshold were adopted to all teat results and the test results were displayed gray scale. From the results, for the shorter heating times the reflection area of multiple echo have been increased, so the data was obtained from the position where it can be eliminated as much as possible. At 80% of proper heating time(168 sec.), the signal of melt flow zone was obtained clearly, so measuring could be conducted. From 7% of proper heating time(15 sec.) to shorter heating times. we could not obtain the signal because test specimen was not fused. From the result, we can verify that measuring of melt flow zone by using phased array ultrasonic imaging method is possible. And we can verify to complete and incomplete butt fusion by measuring the melt flow zone.

A Study on Suppression of UT Grain Noise Using SSP MPO Algorithms (SSP MPO 알고리즘을 이용한 초음파 결정립 잡음 억제에 관한 연구)

  • Koo, Kil-Mo;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.81-89
    • /
    • 1996
  • It is very important for ultrasonic test method to evaluate the integrity of the class I components in nuclear power plants. However, as the rltrasonic test is affected by internal structures and configurations of test materials, backscattering, that is, time invariant noise is generated in large grain size materials. Due to the above reason, the received signal results in low signal to noise(S/N) ratio. Split spectrum processing(SSP) technique is effective to suppress the grain noise. The conventional SSP technique. however, has been applied to unique algorithm. This paper shows that MPO(minimization and polarity threshold) algorithm which two algorithms are applied simulatancously, was utilized, the signal processing time was shorten by using the new constant-Q SSP with the FIR filter which frequency to bandwidth ratio is constant and the optimum parameters were analysed for the signal processing to longitudinal wave and shear wave with the same requirements of inspection on nuclear power plant site. Moreover, the new ultrasonic test instrument, the reference block of the same product form and material specification, stainless stell test specimens and copper test specimens block of the same fabricated for the application of new SSP technique. As the result of experimental test with new ultrasonic test instrument and test specimens, the signal to noise ratio was improved by appying the new SSP technique.

  • PDF

Development of Ultrasonic Pulse Compression Using Golay Codes (Golay 코드를 사용한 초음파펄스압축법 개발)

  • Kim, Young-H.;Kim, Young-Gil;Jeong, Peter
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.3
    • /
    • pp.185-193
    • /
    • 1994
  • Conventional ultrasonic flaw detection system uses a large amplitude narrow pulse to excite a transducer. However, these systems are limited in pulse energy. An excessively large amplitude causes a dielectric breakage of the transducer, and an excessively long pulse causes decrease of the resolution. Using the pulse compression, a long pulse of pseudorandom signal can be used without sacrificing resolution by signal correlation. In the present work, the pulse compression technique was implemented into an ultrasonic system. Golay code was used as a pseudorandom signal in this system, since pair sum of autocorrelations has no sidelobe. The equivalent input pulse of the Golay code was derived to analyze the pulse compression system. Throughout the experiment, the pulse compression technique has demonstrated for its improved SNR(signal to noise ratio) by reducing the system's white noise. And the experimental data also indicated that the SNR enhancement was propotional to the square root of the code length used. The technique seems to perform particularly well with highly energy-absorbent materials such as polymers, plastics and rubbers.

  • PDF

Automatic Ultrasonic Inspection on Heater Sleeves and J-Groove Welds of Pressurizer (가압기 전열기 슬리브 및 J-Groove 용접부의 자동 초음파검사)

  • Ryu, Sung Woo;Chang, Hee Jun;Kim, Sun Je;Lee, Sang Duck;Sung, Jong Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.20-27
    • /
    • 2010
  • In order to prevent the corrosion of component contacted primary water designed alloy 600 material in the nuclear power plant. But the primary water stress corrosion cracking(PWSCC) of alloy 600 and weld area occurs continuously due to the residual stress. The leakage accident resulted from PWSCC in the drain nozzle of the steam generator of domestic power plants. Heater sleeves of the pressurizer are welded with alloy 600 weld material and therefore exposed to the primary water environment. PWSCC occurred in heater sleeve material and weld area of many foreign power plants. The current issue of domestic nuclear power plants are consequently concentrated to PWSCC of similar material. In order to improve the detection and the sizing of the PWSCC in the welding sleeve of the pressurizer, the automatic UT system and multi-directions probe sets have been developed. The experimental studies have been performed using the mock-up block containing artificial reflectors(ID connected EDM notch) and semi-artificial cracks made from thermal fatigue. The automatic UT System is applied in the detection and the length sizing of the ID/OD on the tube and the J-groove weld area of the artificial reflectors and results of the detection and the sizing are compared respectively. Also, the developed automatic UT system is successfully accomplished to inspect the heater sleeve and the J-groove weld area on the pressurizer for the detection of PWSCC.

  • PDF

Study on the Micro Crack Detection in Joints by Using Ultrasound Infrared Thermography (초음파 적외선 열화상을 이용한 접합부의 미세균열 검출 연구)

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Seung-Seok;Huh, Yong-Hak;Lee, Bo-Young;Kim, Jae-Seong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 2012
  • This study detected SCC defects of dissimilar metal welded(STS304 and SA106 Gr. b) pipes using the ultrasonic infrared thermography method and the lock-in image treatment method among infrared thermography method. The infrared excitement equipment has 250 Watt of output and 20 kHz of frequency. By using the ultrasound infrared thermography method, the internal defects of dissimilar metal weld joints of pipes used at nuclear power plants could get detected. By an actual PT test, it was observed that the cracks inside the pipe existed not as a single crack but rather as a multiple cracks within a certain area and generated a hot spot image of a broad area on the thermography image. In addition, UT technology could not easily defects detected by the width of $10\;{\mu}m$ fine hair cracks. but, ultrasound infrared thermography technique was defect detected.

Development and Characterization of High Frequency Ultrasonic Transducer Using PVDF and P(VDF-TrFE) (PVDF 및 P(VDF-TrFE)를 이용한 고주파수 수침용 초음파 탐촉자 개발 및 평가)

  • Kim, Ki-Bok;Kim, Byoung-Geuk;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The high frequency ultrasonic transducers using polyvinyliden fluoride(PVDF) and polyvinylidene fluoride trifluorethyylene(P(VDF-TrFE)) were developed. The characteristics of fabricated high frequency ultrasonic transducer such as beam diameter, high frequency ultrasonic detection field and amplitude of the first pulse echo signal from the test target in the water were analyzed. The high frequency ultrasonic detection field was affected by the length of coaxial cable between high frequency transducer and ultrasonic pulser/receiver. As the size of the test target increased, the high frequency detection field decreased and the amplitude of a reflection signal increased. The peak amplitude of the first pulse echo signal of P(VDF-TrFE) transducer was higher than that of PVDF transducer. The high frequency ultrasonic detection field of PVDF transducer was wider than that of P(VDF-TrFE) transducer. With C-scan testing, the developed high frequency ultrasonic transducer could detect the 30 to $100{\mu}m$ of hydrogen induced crack of steel specimen by C-scan testing.