• Title/Summary/Keyword: 초속경 보수용 모르타르

Search Result 11, Processing Time 0.031 seconds

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

An Experimental Study on the Properties of Ultra Rapid Hardening Mortar Using Magnesia-Phosphate Cement (마그네시아 인산염 시멘트를 사용한 보수용 초속경 모르타르의 특성에 관한 실험적 연구)

  • Ahn, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.109-116
    • /
    • 2007
  • Building structures are generally large in size and have a long life, and the construction of such structures requires the investment of a huge amount of money and social infrastructure. Furthermore, building structures are closely related to people's life. Recently, however, the rapid development of society has been worsening air pollution, which is in turn accelerating the degradation of building structures. Thus, the safety of building structure is emerging as a critical issue. To cope with this problem, the government enacted "The Special Act on Safety Control for Infrastructure" but we need engineers' higher concern over the maintenance and reinforcement of existing structures. Recently researches are being made actively on repair mortar using ultra rapid hardening cement for recovering the performance of structures. The present study conducted an experiment on the basic physical properties of ultra rapid hardening mortar for repairing and reinforcing building structures using magnesia cement and mono-ammonium phosphate. In the experiment, we changed the water-cement ratio and carried out replacement at different ratio of MAP/MgO(%). We used retarder to have working life, and made comparative analysis through evaluating working life and fluidity and measuring strength by age.

Watertightness and Durability Properties of Ultra Rapid Hardening Grout using Bottom-ash (잔골재 대체재로서 바텀애쉬를 이용한 초속경 그라우트재의 수밀성 및 내구특성)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Cho, Byoung-Young;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.102-109
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, watertightness and durability properties of URHM on temperature condition of construction field were performed. Test result, seepage quantity and water absorption coefficient regarding watertightness of URHM were as in the following : series II > series I. Seepage quantity for the standard condition were smaller than low temperatures. all specimens were satisfied below 20g as standards of seepage quantity on KS F 4042. Because of the decrease of unit cement content by to replacement of blast furnace slag, the neutrlization resistance for durability properties was reduced. The result of alkali resistance and acide resistance, compressive strengths for specimens soaked in calcium hydroxide solution of seriesI were lower than compressive strengths for specimens not soaked. On the other hand, the case of series II show that the deterioration of compressive strengths for specimens was not almost showed. Compressive strengths of specimens soaked were similar with specimens not soaked except series II-C in $5^{\circ}C$. Therefore, specimens using both blast furnace slag and bottom ash were good in alkali resistance and acide resistance.

  • PDF

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF

Compressive and Adhesive Strengths of Mortars using Re-emulsification Type Polymer and Ultra-Rapid-Hardening Cement (재유화형 분말수지와 초속경 시멘트를 혼입한 모르타르의 압축강도 및 접착강도 특성)

  • Lee, Kwang-Il;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • The objective of this study is to develop a mortar mixture with high workability and adhesive strength for section jacketing in seismic strengthening technology of existing concrete structures. To achieve targeted requirements of the mortars (initial flow exceeding 200 mm, compressive strength of 30MPa, and adhesive strength exceeding 1MPa), step-by-step tests were conducted under the variation of the following mixture parameters: water-to-binder ratio, sand-to-binder ratio, polymer-to-binder ratio, dosage of viscosity agent, and content of ultra-rapid-hardening cement. The adhesive strength of the mortars was also estimated with respect to the various surface treatment states of existing concrete. Based on the test results, the mortar mixture with the polymer-to-binder ratio of 10% and the content of ultra-rapid-hardening cement of 5% can be recommended for the section jacketing materials. The recommended mortar mixture satisfied the targeted requirements as follows: initial flow of 220 mm, high-early strength gain, 28-day compressive strength of 35MPa, and adhesive strength exceeding 1.2MPa.

Mechanical Properties of Repair Mortar Incorporated with Bio Polymer (바이오 폴리머를 이용한 구조물 보수용 모르타르의 역학적 특성 평가)

  • Lee, Sun-Mok;Hyun, Jung-hwan;Kwon, Ki-Seong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.97-104
    • /
    • 2018
  • In recent years, more than 5,000 tons of sargassum honeri have been infested in the southern coast and the coast of Jeju Island, causing serious damage to the farms and fisheries, and environmental problems. The alginate contained in the sargassum honeri is a natural polymeric substance mainly used for medicines and foods. However, since there is no way to utilize it in large quantities, a study was carried out to utilize bio polymer obtained from sargassum honeri in producing polymer mortar for repairing deteriorated infrastructures. From the tests of setting time, it was found that the L0BP12 mixture containing 12% of bio polymer increased the setting time by 20% as compared with the L12BP0 mixture using only synthetic polymer. From the tests of water absorbtion, the LOBP12 combination decreased by 0.36% compared to Plain-URHC using ultra rapid hardening cement. This indicated that the watertightness of the mortar was increased by the incorporation of the bio polymer. In the compressive and flexural strength tests, the strength decreased as the amount of bio polymer increased. The incorporation rate of the maximum bio polymer satisfying the KS F 4042 standard was determined to be 12%. In addition, the bond strength of the mortar produced with biopolymer was higher than that of Plain-URHC specimens, and it was confirmed that incorporation of bio polymer improves bond strength of mortar.

Material Properties of Ultra Rapid Hardening Mortar for Repairing Sewage Treatment Concrete Pipes (콘크리트 하수관거 보수용 초속경 수중불분리 모르타르의 재료적 특성)

  • Lee, Byungjae;Lee, Sunmok;Bang, Jin-wook;Kim, Yun-yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • Among the sewage pipes installed in Korea, the length of concrete pipes exceeding 20 years is 66,334 km (42.5%). Deteriorated concrete sewer pipes need to be repaired due to the leakage of internal sewage, which causes problems such as sink holes by expanding the cavity around the pipeline. In this study, we tried to apply anti-washout underwater mortar with ultra rapid hardening cement and segregation reducing agent to sewage pipe repair. As a result of the setting time test, the final set time was delayed by up to 172% by incorporating segregation reducing agent. In the test for measuring the degree of mortar segregation in water, it was measured at pH 12 or less under all mixing conditions. In addition, the suspension amount was measured to be 50 mg / l or less to satisfy the KCI-AD102 standard by incorporating a segregation reducing agent. In terms of the average value of mortar compressive strength, by incorporating segregation reducing agent, the strength of the specimens produced in air was more than 80% of that of the specimens produced in water. Conversely, the bond strengths of the specimens produced in water were measured to be higher than those of the specimens produced in air. Water resistance was evaluated by measuring water absorption and water permeability. Water absorption and water permeability were reduced by 42.6% and 36.6%, respectively, by mixing segregation reducing agent.

The Bond Characteristics of Ultra Rapid Hardening Mortar for Repair using Magnesia-Phosphate Cement (마그네시아 인산염 시멘트를 이용한 초속경 보수 모르타르의 접착특성)

  • Lee, Sun-Ho;Kwon, Hee-Sung;Paik, Min-Su;Ahn, Moo-Young;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.609-612
    • /
    • 2008
  • Ultra Super Early Strength Cement is a material that satisfies these requirements. early hydration heat however, is significant over regular concrete, thus discretion is advised for thermal cracks in accordance with heat generation when constructing a large-scale structures. In addition, the negative point that it is difficult to achieve required strength in a short period of time following rubbing process while retaining workability, the cement is being used conditionally for engineering material and Ultra Super Early Strength Cement for maintenance material for construction doesn't exist. Magnesia Phosphate Cement, which is currently under studies in overseas uses no extra admixture and has strong points of Ultra Super Early Strength as well as favorable construction-ability and adhesive stability to the prototype concrete. These factors stem recognition that it could be used as maintenance material for construction of diverse applicability. In order to provide necessary data to increase practicality of the magnesia phosphate cement for Ultra Super Early Strength Mortar, the study carried out simulate experiment on member of framework to review field applicability.

  • PDF

An Experimental Study on Rapid Repairing Mortar for Road with Steel Slag (철강 슬래그를 사용한 도로용 긴급보수 모르타르에 관한 실험적 연구)

  • Jung, Ui-In;Kim, Bong-Joo;im, Jin-Man;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • The purpose of this study is to recycle steel slag generated from the iron producing process and to use steel slag as a construction material which is currently landfilled Steel slag is subjected to aging treatment due to the problem of expansion and collapse when it reacts with water. The Slag Atomizing Technology (SAT) method developed to solve these problems of expanding collapse of steel slag. In this study, experimental study on the emergency repair mortar using the reducing slag, electric arc furnace slag and silicon manganese slag manufactured by the SAT method is Reduced slag was shown an accelerated hydration when it was replaced with rapidly-setting cement, and the rate of substitution was equivalent to 15%. It is shown that the electric furnace oxide slag is equivalent to 100% of the natural aggregate, and it can be replaced by 15-30% when the silicon manganic slag is substituted for the electric furnace oxide slag. With the above formulation, it was possible to design the rapidly repair mortar for road use. These recycling slags can contribute on achieving sustainability of construction industry by reducing the use of cement and natural aggregates and by reducing the generation of carbon dioxide and recycling waste slag.