• Title/Summary/Keyword: 초동주시

Search Result 48, Processing Time 0.03 seconds

A Field Application of 3D Seismic Traveltime Tomography (I) - Constitution of 3D Seismic Traveltime Tomography Algorithm - (3차원 탄성파 토모그래피의 현장 적용 (1) - 3차원 토모그래피 알고리즘의 구성 -)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.202-213
    • /
    • 2008
  • In this study, theoretical approach of 3D seismic traveltime tomography was investigated. To guarantee the successful field application of 3D tomography, appropriate control of problem associated with blind zone is pre-requisite. To overcome the velocity distortion of the reconstructed tomogram due to insufficient source-receiver array coverage, the algorithm of 3D seismic traveltime tomography based on the Fresnel volume was developed as a technique of ray-path broadening. For the successful reconstruction of velocity cube, 3D traveltime algorithm was explored and employed on the basis of 2nd order Fast Marching Method(FMM), resulting in improvement of precision and accuracy. To prove the validity and field application of this algorithm, two numerical experiments were performed for globular and layered models. The algorithm was also found to be successfully applicable to field data.

이산 웨이브릿 변환을 이용한 탄성파 주시결정

  • Kim, Jin-Hu;Lee, Sang-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2001
  • The discrete wavelet transform(DWT) has potential as a tool for supplying discriminatory attributes with which to distinguish seismic events. The wavelet transform has the great advantage over the Fourier transform in being able to localize changes. In this study, a discrete wavelet transform is applied to seismic traces for identifying seismic events and picking of arrival times for first breaks and S-wave arrivals. The precise determination of arrival times can greatly improve the quality of a number of geophysical studies, such as velocity analysis, refraction seismic survey, seismic tomography, down-hole and cross-hole survey, and sonic logging, etc. provide precise determination of seismic velocities. Tests for picking of P- and S- wave arrival times with the wavelet transform method is conducted with synthetic seismic traces which have or do not have noises. The results show that this picking algorithm can be successfully applied to noisy traces. The first arrival can be precisely determined with the field data, too.

  • PDF

EZTOMO CROSSWELL TOMOGRAPHY SOFTWARE SYSTEM UPDATE (EZTOMO 시추공 토모그래피 소프트웨어 시스템 보완)

  • Lee, Doo-Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.69-72
    • /
    • 2008
  • EZTOMO is a crosswell seismic tomography software system. The system has capability of event picking, raytracing, inversion, error analysis, and visualization of the processing results. Waveform of the first arrival signal has been utilized to select the event of the first motion, and uncertainty measured in estimation of the first breaks has been utilized to improve the inversion process.

  • PDF

Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis (지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정)

  • Kubota, Ryuji;Nishiyama, Eiichiro;Murase, Kei;Kasahara, Junzo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.

Development and Application of a Seismic Tomography Software Based on Windows (탄성파 토모그래피 자동화 처리 소프트웨어 개발 및 적용성 검토)

  • Jung, Sang-Won;Ha, Hee-Sang;Ko, Kwang-Beom
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.157-163
    • /
    • 2004
  • In this study, a travel-time tomography software was developed under the MS Windows system and GUI environment for user. The software supports following features: (1) supporting various data input format (2) flexible treatment of shot and receiver coordinate coding (3) flexible first arrival picking and modification (4) easy modification of intermediate tomogram. It is expected that the effort of the user can be minimized in each data processing step.

Crustal structure of the Korean peninsula by inverting the travel times of first-arrivals from large explosions (대규모 발파자료 초동주시 역산을 통한 한반도 지각 속도구조 연구)

  • Kim Ki Young;Hong Myung Ho;Lee Jung Mo;Moon Woo Il;Baag Chang Eob;Jung Hee Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.103-107
    • /
    • 2005
  • In order to investigate the velocity structure of the southern part of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. Velocity tomograms were derived from inverting first arrival times. One-dimensional velocity models derived by joint analyses of teleseismic receiver functions and surface wave dispersion at several stations near the profiles were uesd to build initial models. The raypaths indicate several midcrust interfaces including ones at approximate depths of 2.0 and 14.9 km with refraction velocities of approximately 6.0 and 7.1 km/s, respectively. The deepest significant interface varies in depth from 30.8 km to 36.1 km. The critically refracting velocity varies from 7.8 to 8.1 km/s along this interface which may correspond to the Moho discontinuity. The velocity tomograms show (1) existence of a low-velocity zone centered at 6-7 km depth under the Okchon fold belt, (2) extension of the Yeongdon fault down to greater than 10 km, and (3) existence of high-velocity materials under the Gyeongsan basin whose thickness is less than 4.2 km.

  • PDF

Crustal Structure of the Korean Peninsula by Inverting the Rravel Times of First-arrivals from Large Explosions (대규모 발파자료 초동주시 역산을 통한 한반도 지각 속도구조 연구)

  • Kim, Ki-Young;Hong, Myong-Ho;Lee, Jung-Mo;Moon, Woo-Il;Baag, Chang-Eob;Jung, Hee-Ok
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.45-48
    • /
    • 2005
  • In order to investigate the velocity structure of the southern part of the Korean peninsula, exploded seismic signals were recorded for 120 s along a 294-km WNW-ESE line and 150 s along a 335-km NNW-SSE line in 2002 and 2004, respectively. Velocity tomograms were derived from inverting first arrival times. One-dimensional velocity models derived by joint analyses of teleseismic receiver functions and surface wave dispersion at several stations near the profiles were uesd to build initial models. The raypaths indicate several midcrust interfaces including ones at approximate depths of 2.0 and 14.9 km with refraction velocities of approximately 6.0 and 7.1 km/s, respectively. The deepest significant interface varies in depth from 30.8 km to 36.1 km. The critically refracting velocity varies from 7.8 to 8.1 km/s along this interface which may correspond to the Moho discontinuity. The velocity tomograms show (1) existence of a low-velocity zone centered at 6-7 km depth under the Okchon fold belt, (2) extension of the Yeongdon fault down to greater than 10 km, and (3) existence of high-velocity materials under the Gyeongsan basin whose thickness is less than 4.2 km.

  • PDF

Seismic Velocity Structure Along the KCRT-2008 Profile using Traveltime Inversion of First Arrivals (초동주시 역산을 통한 KCRT-2008 측선 하부의 지진파 속도구조)

  • Kim, Ki-Young;Lee, Jung-Mo;Baag, Chang-Eob;Jung, Hee-Ok;Hong, Myung-Ho;Kim, Jun-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.153-158
    • /
    • 2010
  • To investigate the velocity structure in the central and southern parts of the Korean peninsula, a 299-km NW-SE seismic refraction profile KCRT-2008was obtained across major tectonic boundaries. Seismic waves were generated by detonating 250 ~ 1500 kg explosives at depths of 50 ~ 100 m in eight drill holes located at intervals of 21 ~ 113 km. The seismic signals were detected by 4.5 Hz geophones at a nominal interval of 500 m. The first-arrival times were inverted to derive a velocity tomogram. The raypaths indicate several mid-crust interfaces including those at approximate depths of 2 ~ 3, 11 ~ 13, and 20 km. The Moho discontinuity with refraction velocity of 7.7 to 8.1 km/s has a maximum depth of 34.5 km under the central portion of the peninsula. The Moho becomes shallower as the Yellow Sea and the East Sea are approached on the west and east coasts of the peninsula, respectively. The depth of the 7.6 km/s velocity contour varies from 31.3 km to 34.4 km. The velocity tomogram shows the existence of a 129 km wide low-velocity zone centered at 7.2 km depth under the Okchon fold belt and Gyeonggi massif and low-velocity(< 5.4 km/s) rocks in the Gyeongsang sedimentary basin with a maximum thickness of 2.6 km