Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis

지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정

  • Published : 2009.02.28

Abstract

The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

관측된 파형의 특성들을 해석하여 굴절파와 광각으로 도달한 반사파를 분석하면 결과물로 얻어지는 지각구조 모델의 신뢰도를 향상시킬 수 있으며, 균일한 격자상의 그래프 이론에 기반한 파면법은 복잡한 구조에서도 주시와 파선경로를 효과적으로 계산할 수 있으나, 기본적으로 초동만을 이용하게 되는 단점이 있다. 이번 연구에서는 초동뿐만 아니라 후기 시간대에 도달하는 반사파와 굴절파 및 변환된 P파와 5파의 주시와 파선경로를 계산하기 위하여 다층 모델상에서 표현되는 slowness network 노드에 기반한 수정 파면법을 이용하는 새로운 알고리즘을 개발하였다. 새로운 알고리즘을 통해 모호면의 형태와 변환된 P파와 S파의 위상을 획득하기 위하여 후기 시간대의 Pg파, Pn파 이후에 들어오는 강한신호의 파, 모호면에서 중첩된 PmP를 분석하였다. 제안된 알고리즘의 효용성을 검증하기 위하여 해양-대륙의 전이대와 해령 및 해산에 러한 모델링 연구를 수행하였으며, 2차원 유한차분법을 이용한 수치모형을 통해 그 효용성을 확인하였다. 초동 주시만을 해석에 사용할 경우 대륙-해양 전이대와 해령 및 해산과 같은 모델에서 획득되는 도달파들과 파선경로들의 특성이 각기 다르게 나타나 많은 해석상의 오류가 발생할 수 있는 위험성이 있기 때문에 제안된 기법을 통해 효과적인 해석을 수행할 수 있을 것이다.

Keywords

References

  1. Chervený, V., Molotkov, I. A., and Pšencík, I., 1977, Ray method in seismology: Praha, Univ. Karlova
  2. Dijkstra, E. W., 1959, A note on two problems in connexion with graphs:Numerische Mathematik, 1, 269–271. doi: 10.1007/BF01386390
  3. Fujie, G., Kasahara, J., Sato, T., and Mochizuki, K., 2000, Traveltime and raypath computation: A new method in a heterogeneous medium: Butsuri-Tansa (Journal of Society of Exploration Geophysicist, Japan), 53, 1–11
  4. Fujie, G., Mochizuki, K., and Kasahara, J., 2003,Newtraveltime and ray-pathcomputation methods for reflection and PS converted waves using a regular-grid: Butsuri-Tansa (Journal of Society of Exploration Geophysicist, Japan), 56, 357–368
  5. Kasahara, J., 1993, 'An introduction to computerized geoscience,' University of Tokyo Press, 239 pp
  6. Kasahara,J.,Kubota,R.,Tanaka,T.,Mizohata,S.,Nishiyama,E.,Nishizawa,A. and Kaneda, K., 2007, New precise method for the crustal structure analysis using OBS and control sources, Abstract of 2007 JGU, O135–007
  7. Korenaga, J., Holbrook, W. S., Kent, G. M., Kelement, P. B., Detrick, R. S., Larsen, C., Hopper, J. R., and Dahl-Jensen, T., 2000, Crustal structure of the Southeast Greenland Margin from joint refraction and reflection seismic tomography: Journal of Geophysical Research, 105(B9), 21591–21614. doi: 10.1029/2000JB900188
  8. Langan, R., Lerche, T. I., and Cutler, R. T., 1985, Tracing of rays throughheterogeneous media: An accurate and efficient procedure: Geophysics,50, 1456–1465. doi: 10.1190/1.1442013
  9. Larsen, S., 2000, 'E3D' 2D/3D Elastic Finite-Difference Wave PropagationCode: UCRL. (http://www.seismo.unr.edu/ftp/pub/louie/class/455/e3d/)
  10. Moghaddam, P. P., and Kasahara, J., 2003, Accuracy investigation of seismicreciprocity using 3D FDM code: Eos, Transactions, American Geophysical Union, 84, Abstract S41E-0128, 2003
  11. Moser, T. J., 1991, Shortest path calculation of seismic rays: Geophysics, 56,59–67. doi: 10.1190/1.1442958
  12. Nishizawa, A., Kaneda, K., Nakanishi, A., Takahashi, N., and Kodaira, S., 2006, Crustal structure of the ocean-island arc transition at the mid Izu-Ogasawara (Bonin) arc margin: Earth, Planets, and Space, 58, e33–e36
  13. Rawlinson, N., and Sambridge, M., 2005, The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media: Exploration Geophysics, 36, 341–350. doi: 10.1071/EG05341
  14. Saito, H., 1989, Traveltimes and raypaths of first arrival seismic waves, Computation method based on Huygens’ Principle: 59th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 244–247
  15. Tsuruga, T., Kasahara, J., Nishiyama, E., Murase, K., Kubota, R., and Nishizawa, A., 2007, Evaluation of efficiencies of P-S conversion in the oceanic crust and Vp/Vs estimation: Japan Geoscience Union Meeting, Abstract, O135–008
  16. Tsuruga, K., Kasahara, J., Kubota, R., Nishiyama, E., Kamimura, A., Yoshihiro Naito, Y., Honda, H., Oikawa, N., Tamura, Y., Nishizawa, A., and Kaneda, KK, 2008, Evaluation and interpretation of the effect of heterogeneously inserted thin/thick, high/low velocity layers in OBS/Airgun structure study: Exploration Geophysics (Butsuri-Tansa), 61, 1–14
  17. Vidale, J. E., 1988, Finite-difference calculation of travel times: Bulletin of the Seismological Society of America, 78, 2062–2076
  18. Vinje, V., Iversen, E., and Gjoystadal, H., 1993, Travel time and amplitude estimation using wave front construction: Geophysics, 58, 1157–1166. doi: 10.1190/1.1443499
  19. Zelt, C. A., and Ellis, R. M., 1988, Practical and efficient ray tracing in two-dimensional media for rapid traveltime and amplitude forward modelling: Canadian Journal of Exploration Geophysics, 24, 16–31
  20. Zhang, J., and Toksöz, M. N., 1998, Nonlinear refraction travel time tomography: Geophysics, 63, 1726–1737. doi: 10.1190/1.1444468
  21. Zhang, J., ten Brink, U. S., and Toksöz, M. N., 1998, Nonlinear refraction and reflection travel time tomography: Journal of Geophysical Research, 103(B12), 29743–29757. doi: 10.1029/98JB01981