• Title/Summary/Keyword: 초대형 부유구조물

Search Result 50, Processing Time 0.023 seconds

A Visualization System of Very Large Floating Structure Using Processing of Hydro-elastic Analysis Data (유탄성 해석데이터 처리를 통한 초대형 해상구조물의 가상 목업 가시화 기술 개발)

  • Cha, Moohyun;Park, Seongwhan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.773-774
    • /
    • 2010
  • 본 연구에서는 초대형 부유식 해상 구조물(Very Large Floating Structure) 및 상부 구조물의 동적거동을 실시간 그래픽환경에서 가상 목업을 이용해 가시화하였다. 구조물 자체의 탄성 변형이 고려된 유탄성 응답해석 결과 데이터를 분석하고, 이를 실시간 가시화 시스템에 적용하기 위한 데이터 처리 방법을 소개하였으며, 3 차원 환경에서의 VLFS 및 해양파 가시화 결과와, VLFS 및 상부구조물 거동의 연동 결과를 소개하였다.

Uniform leveling deposition of Titanium in Molten salt electrolyte (용융염 전해액중에 있어서 티타늄의 평활전석)

  • Kim, Yu-Sang;Bae, U-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.314-315
    • /
    • 2015
  • 티타늄은 높은 비강도로 알려지고 있어 항공기산업이나 군사산업에 주로 사용된다고 생각하기 쉽다. 그러나 해수와 같은 염화물이온을 함유한 수용액에 대해서는 뛰어난 내식성을 나타내며, 해양토목과 조선관계자는 초 내식성재료로 반영구적인 내구성을 갖는 재료로 보고 있다. 일반적인 페인트 방식법은 일정기간 후에 다시 칠해야 하는데다, 박리된 도료가 환경에 미치는 악영향도 염려되고 있다. 따라서 다시 칠하는 것이 곤란한 초대형 해양 부유구조물에는 티타늄이 매우 효과적인 것으로 기대할 수 있다. 그러나 티타늄은 광석을 제련하여 금속티타늄으로 제조하는 염화 환원공정이 곤란하고 고가여서 선체나 매우 큰 부유식의 해양구조물에는 보급되지 못했다. 따라서 티타늄재료를 선체 등의 구조재로 사용하지 않고 염가의 강판위에 도금하여 내식성을 향상시키는 방법을 생각할 수 있다. 또 해양구조물에 한정하지 않고, 대형 공공시설의 지붕재료나 해수담수화 설비, 화학플랜트 배관에 응용을 기대할 수 있고, 보급이 진전되면 스테인리스제품을 대체할 수도 있다. 티타늄의 평활전해석출 도금기술은 표면처리공학에서 최대의 새로운 개척분야인 것으로 사료된다. 본고에서는 티타늄의 평활피막전해석출 결과와 문제점에 대하여 기술하였다.

  • PDF

Motion and Wave Elevation Analyses for Floating Breakwaters and a VLFS (소파제-초대형 부유식 해상구조물 운동 및 소파효율 해석)

  • 홍도천;홍사영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.22-27
    • /
    • 2004
  • Waveheight attenuation efficiencies of floating breakwaters in water of finite depth for a VLFS are studied numerically in accordance with the two body radiation-diffraction problem. Four different forms of the breaker are tested with a solid VLFS. The radiation-diffraction wave elevations between the breakwater and the VLFS are predicted directly instead of the far-field transmission-reflection coefficients of the breakwater.

Transient Responses of an Airplane Taking off from and Landing Very Large Floating Stricture in Waves (항공기 이 .착륙 시 초대형 부유식 해양구조물의 시간 영역 응답 해석)

  • 신현경;이호영;임춘규;강점문;윤명철
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.63-67
    • /
    • 2000
  • Up to this day, Most studies of hydroelasticity are inclined to frequency domain atnlysis. Thos amlysis Q the landing, take-4, and dropping of airaqft on a structure. So, the concern of this prrper is a tra a VLFS subjected to dymmic lazd induced by airplane larndirrg and take-off. To predict added mass, dampr exciting force, the source-dipole distribution method were used The responses are accomplished by Fdoimain analysis method is based on Newmark $\beta$ method to pursuit time step pnzcedure taking advantage function for hvdrodvnumic effects.

  • PDF

Experimental Study of Hydroelastic Behaviors of VLFS Considering Breakwaters (방파제를 고려한 초대형 부유식 해상구조물의 유탄성 응답 특성에 관한 실험적 연구)

  • 신현경;이형락;유경훈;윤명철;강점문;김화수
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2004
  • In this paper, an experimental study on the hydroelastic behaviors of a VLFS with L=5,000m was made considering a breakwater. The principal dimensions of the VLFS model were 9m${\times}$1.8${\times}$0.0108m(L${\times}$B${\times}$D) and the length of breakwater was 12.6m (1.4L). The distance between the VLFS and the breakwater varied from B/2 to 28. The wide tank test results were compared with the numerical predictions and the comparison showed a little gap along its longitudinal axis, in spite of using the very small model size due to the scale 1/555.5

A Study on Improvement of Legal System for Construction of Very Large Floating Structure (부유식 초대형 해상구조물의 건설을 위한 법제도 개선에 관한 연구)

  • 이한석;송화철
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.365-380
    • /
    • 1999
  • In this thesis the legal systems related to real estate and sea area utilization are studied in order to improve them for construction of Very Large Floating Structure. Main research subjects are as follows: 1) Whether can Very Large Floating Structure be accepted or not as real estate like house and land\ulcorner 2) How can the sea area which is occupied by Very Large Floating Structure be utilized\ulcorner As the conclusion, the Very Large Floating Structure can be registered as real estate even though it is not specified by Korean law for the present. The design concept of Very Large Floating Structure can be interpreted as satisfying enough necessary conditions and factors for Very Large Floating Structure to become real estate. In the near future, we have to make improvement on the laws related with the construction of Very Large Floating Structures so that private sectors can joint the construction. In additions, a new law for various floating structures should be made as soon as possible.

  • PDF

Transient Responses of an Airplane Taking off from and Landing on a Very Large Floating Structure in Regular Waves (규칙파중 항공기 이.착륙시 초대형 부유식 해양구조물의 천이 응답 해석)

  • 신현경;이호영;임춘규;강점문;윤명철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • Up to now, Most studies of hydroelasticity are about frequency domain analysis. Those aren't suited for analysis of the landing take-off, and dropping of aircraft on a structure. So, the concern of this paper is the transient behavior of a VLFS subjected to dynamic load, induced by airplane landing and take-off. To predict the added mass, damping coefficient, and wave exciting force, the source-dipole distribution method was used in the frequency domain. The responses are accomplished by using the FEM scheme. A time domain analysis method is based on the Newmark β method to pursue the time step procedure, taking advantage of memory effect function for hydrodynamic effects.

  • PDF

Hydroelastic Responses for a Very Large Floating Structure with a Breakwater (방파제를 고려한 초대형 부유식 해양구조물의 응답)

  • H.Y. Lee;H. Shin;C.G. Lim;O.H. Kim;J.M. Kang;M.C. Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.26-32
    • /
    • 2001
  • In this paper, elastic responses of a floating structure in waves with a breakwater are presented. The method of source-dipole distribution is used to analyze the velocity potentials for the fluid region. The deflections of structure are expanded approximately in terms of natural mode functions of free-free beam. The model for present calculation is a floating plate with an length of 1000m and the hydroelastic responses for a floating structure with a straight breakwater are shown. The effects of distance between breakwater and structure, bending rigidity and relative length of regular waves are examined.

  • PDF

Influences of Stiffness Distributions on Hydroelastic Responses of Very Large floating Structures (강성분포의 변화가 초대형 부유식 구조물의 유탄성응답에 미치는 영향 고찰)

  • Kim, Byoung-Wan;Hyoung, Jo-Hyun;Hong, Sa-Young;Cho, Seok-Hyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.220-232
    • /
    • 2005
  • Influences of stiffness distributions on hydroelastic responses of very large floating structures (VLFS) are studied in this paper. Hydroelastic responses are calculated by direct method employing higher-order boundary element method (HOBEM) for fluid analysis and finite element method (FEM) for structure analysis. In structural analysis using FEM, Mindlin plate elements are used. An 1 km-long VLFS with uniform stiffness and modified VLFS with varying stiffness distributions are considered in numerical analysis. Responses of VLFS increase in flexible parts and decrease in stiff Parts. Reduction degree of displacements of VLFS with stiffened center is larger than that of VLFS with stiffened sides.