• Title/Summary/Keyword: 초기균열하중

Search Result 189, Processing Time 0.023 seconds

Microcrack Development in the Pocheon Granite due to Cyclic Loading (피로하중에 의한 포천화강암의 미세균열 발달특성)

  • 장보안;김영화;김재동;이찬구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.275-284
    • /
    • 1998
  • Deformation behavior and microcrack development due to uniaxial compressive cyclic loading in the Pocheon granite were investigated using the ultrasonic velocity measurements and the differential strain analysis(DSA). Most microcracks were developed along the direction parallel to the loading axis. Microcracks developed at the early stage of cyclic loading were formed by propagation of pre-existing cracks. Ultrasonic velocity measurement, DSA and measurement of permanent deformation are good tools to represent microcrack development in rock. Since results from each method are slightly different, microcrack development should be interpreted from all three methods. The magnitude of microcracks developed at the early stage of cyclic loading under 80% loading level is twice compared with those under 70% loading level. The highest volumetric crack strain is about 3000, indicating that the Pocheon granite will fail with 0.3% occupation of microcrack in volume.

  • PDF

An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading (단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구)

  • Ko, Tae-Young;Lee, Seung-Cheol;Kim, Dong-Keun;Choi, Young-Tae
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.307-319
    • /
    • 2011
  • Cyclic loading due to traffic, excavation and blasting causes microcrack growth in rocks over long period of time, and this type of loading often causes rock to fail at a lower stress than its monotonically determined strength. Thus, the crack growth and coalescence under cyclic loading are important for the long-term stability problems. In this research, experiments using gypsum as a model material for rock are carried out to investigate crack propagation and coalescence under monotonic and cyclic loading. Both monotonic and cyclic tests have a similar wing crack initiation position, wing crack initiation angle, cracking sequence and coalescence type. Three types of crack coalescence were observed; Type I, II and III. Type I coalescence occurs due to a shear crack and Type II coalescence occurs through one wing or tension crack. For Type III, coalescence occurs through two wing or tension cracks. Fatigue cracks appear in cyclic tests. Two types of fatigue crack initiation directions, coplanar and horizontal directions, are observed.

Micro-Cracks Control of LB-DECK Using Polymer Cement Concrete (폴리머 시멘트 콘크리트를 이용한 LB-DECK의 미소균열 제어)

  • Lho, Byeong-Cheol;Choi, Jong-Yun;Cho, Gyu-Dae;Choi, Jong-Gwon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Micro-cracks with a width less than 0.1 mm in precast concrete panels do not cause structural problem, but they can cause problems in long term durability and concrete surfaces aesthetic, requiring additional repair costs. In this paper, polymer cement concrete is used to increase flexural tensile strength and to prevent micro-cracks due to construction loads on LB-DECK panels. Using 5% polymer-cement ratio, the panel crack moment is increased by improving flexural tensile strength and controlling visible micro-cracks during construction stage of LB-DECK.

Resistance Curves of Propagating Cracks for Concrete Three-Point Bend Specimens (콘크리트 삼점 휨시험편의 성장하는 균열에 대한 저항곡선)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.568-574
    • /
    • 2001
  • From measured responses of concrete three-point bend tests, the average values of the responses have been calculated. The fracture behavior of continuously propagating concrete crack has been analyzed from the average responses. The experimental parameters of this study were the initial notch sizes of 25.4㎜ and 6.4 ㎜ and the processing times of 2,000 sec. and 20 sec . The different notch sizes were used for the effects of the size of fracture process zone and specimen geometry, and the processing times for those of initial creep. However the load-point displacement rate in this study did not affect the experimental responses seriously. The average loads were calculated from the average external work of a series of tests, and average crack lengths were determined by using strain gages. Before the peak load, the resistance curve could be determined from the size of fracture process zone, but unstable crack propagation of 88㎜ occurred at the load-point displacement of 0.088∼0.154㎜ after the peak load. The average fracture energy density G$\_$F/$\^$ave/ = 115 N/m occurred during the unstable crack propagation. The fracture process zones were fully developed at the crack length of 111㎜, and the sizes of fracture process zone for initial notches of 25.4㎜ and 6.4㎜ were 86㎜ and 105㎜, respectively. Average fracture energy densities of the resistance curves after full development of fracture process zone were 229 N/m for the initial notch of 25.4㎜ and 284 N/m for 6.4㎜. The values were more than twice of G$\_$F/$\^$ave/.

Crack Extension in Anisotropic Solids Subjected to Uniaxial Load (단축하중을 받는 이방성체내 균열의 진전)

  • 임원균;최승룡;안현수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 1999
  • 이방성체의 평면내 직선균열에 대한 균열선단부근의 응력과 변위의 분포는 어떠한 균열체의 형상 및 하중조건에 대해서도 응력확대계수라는 하나의 매개변수로서 나타낼 수 있다고 하는 것이 파괴역학에서 보편화되어 있다. 그러나 많은 경우에 있어서 급수전개식의 이어지는 항은 정량적으로 중요하다. 따라서 본 연구에서는 이러한 항을 유도하고 이것이 균열진전방향에 미치는 영향에 대하여 검초하였다. 이를 위하여 단축하중을 받는 직방성균열체의 해석을 수행하며 재료는 균질이방성체라고 가정하였다. 급수전개식에서 2차항의 영향을 고려하기 위하여 균열선단에서의 응력의 분포를 재해석하였으며, 2차항의 사용은 정확한 균열진전방향의 결정을 위해서 매우 중요함을 보였다. 초기균열진전각도의 결정을 위해서 수직응력비이론을 적용하였다.

  • PDF

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.

혼합모드 I+II 피로 하한계 영역에서의 모드II 영향에 관한 고찰

  • 홍석표;송삼홍;이정무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.113-113
    • /
    • 2004
  • 실제 사용중인 기계나 기계구조물은 다양한 환경 및 복잡한 설계조건으로 인하여 변동하중과 다축에서 작용하는 혼합모드 하중 상태에 놓이는 경우가 대부분이다. 하지만, 순수 모드 I 하중상태 하에서의 연구는 활발히 이루어졌으나, 실제 구조물에서 대부분 발생하는 혼합모드 하중상태 하에서의 연구는 아직 부족한 실정이다. 또한 기계구조물내의 많은 성분요소에 존재하는 작용 하중 방향에 수직적이지 않게 되며, 초기균열의 균열선상에서 성장하지 않는다.(중략)

  • PDF

Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture (CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가)

  • Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • Steel fiber is a effective composite for crack resistance and improve structural performance under tensile loading. This study presents an evaluation of crack resistance and structural performance in cement mortar with steel fiber and expansion agent through internal chemical prestressing. For this work, cement mortar samples with 10% replacement of cement binder with CSA (Calcium-Sulfo-Aluminate) expansion agent and 1% volume ratio of steel fiber are prepared. Including basic mechanical properties, initial cracking load and fracture energy are evaluated in cement mortar beam with notch. Initial cracking load and fracture energy in cement mortar with CSA and steel fiber increase by 1.75 and 1.41~1.53 times compared with those in cement mortar with steel fiber. With optimum mix design for steel fiber and CSA expansive agent, the composite with chemical prestressing can be applied to various members and effectively improve crack resistance to external loading.

A Study on Crack Control of Early-aged Reinforced Concrete Rahmen Bridge (초기재령 철근큰크리트 라멘교의 균열제어에 관한 연구)

  • Jung Hee-Hyo;Lee Sung-Yeol;Kim Woo-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.15-25
    • /
    • 2006
  • The researches on the early-aged concrete hydration process and the techniques for the early-aged concrete crack control mainly have been focused and developed on the massive concretes in both experimental and numerical studies. However, those researches for relatively thin members such as the upper slab of the reinforced concrete rahmen bridge have nearly been attempted. In this study, a designing technique for crack controlling in the thin members of the early-aged reinforced concrete rahmen bridges based on measured temperature history, strength revelation model and sinkage model is proposed. A method of calculating the reinforcing bar area for crack controlling is also proposed and it is found that the distributing bars under the design loads become the main reinforcing bars in the temperature stress analysis of the early-aged reinforced concrete rahmen bridges. It is shown that the proposed analysis technique is able to use the design of crack control for the early-aged reinforced concrete rahmen bridge.

Experimental Study on Fatigue Strength of Continuously Reinforced Concrete Pavements with Initial Transverse Cracks (초기균열간격에 따른 연속철근콘크리트 포장의 피로강도에 대한 실험적 연구)

  • Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1173-1178
    • /
    • 2007
  • A laboratory investigation is conducted to characterize and quantity fatigue life of continuously reinforced concrete pavement with initial cracks. Four specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on the initial crack spacing. The comparison indicates that the fatigue lives of most specimens increases with increasing the initial crack spacing. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.

  • PDF