• Title/Summary/Keyword: 초고강도콘크리트

Search Result 440, Processing Time 0.03 seconds

Drying Shrinkage of Ultra High Strength Steel-Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 자기수축 모델식에 관한 연구)

  • Kang, Su-Tae;Park, Jong-Sup;Joh, Chang-Bin;Park, Jung-Jun;Koh, Gyung-Taek;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.725-728
    • /
    • 2008
  • Most of shrinkage is mainly caused by autogenous shrinkage in Ultra high strength steel-fiber reinforced cementitious composites(UHSFRC). water to binder ratio is very low, about 0.2. It occurs faster hydration and cause a large amount of autogenous shrinkage in early ages. the large autogenous shrinkage can cause harmful cracks in a structure and deteriorate the designed structural performance. therefore it is very important to predict the autogenous shrinkage accurately. The study about the autogenous shrinkage of UHSFRC was carried out in this paper. through comparing with JSCE recommendations for UHSFRC, it was found out that UHSFRC in this study showed higher autogenous shrinkage than that of JSCE. And Applicability of early proposed models by some researchers was also investigated. the analytical results let us know that Miyazawa's model showed the best agreement with the experimentally obtained autogenous shrinkage of UHSFRC.

  • PDF

Properties of Ultra High Performance Fiber Reinforced Cementitious Composites Mixed with Limestone Powder (석회석 미분말을 혼입한 초고성능 섬유보강 시멘트복합재의 특성)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • UHPC has high performance, high strength and excellent mechanical properties. Moreover UHPC(Ultra High Performance Cementitious Composite) has advantage to reduce cross section under the same load compared with other kinds of concrete. But silica fume which is imported from foreign country has a abundant portion in UHPC mixture in comparison with normal concrete. This is one of the main reason to raise the construction cost. Superior mechanical properties of UHPC due to the optimum filling composition can be changed by replacing the very fine ingredient. The purpose of this research is to grasp the characteristic of UHPC which silica fume and silica flour is replaced with limestone powder. This experiment can be divided into three classes according to the kinds of replacement. The compressive strength and flow of all types were measured and microstructure and hydration phenomena for comparing RPC were analyzed by SEM, XRD, NMR method. As a result, the replacement can be considered to be effective by for the decrease of the UHPC structure construction cost and improvement of the fresh UHPC.

Evaluation of Shape Deviation in Phase Change Material Molds Subjected to Hydration Heat During Ultra-High Performance Concrete Free-form Panel Fabrication (UHPC 비정형 패널 제작 시 수화열에 의한 PCM 거푸집의 형상오차 분석)

  • Kim, Hong-Yeon;Cha, Jae-Hyeok;Youn, Jong-Young;Kim, Sung-Jin;Lee, Donghoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2023
  • The construction of free-form structures with intricate curved exteriors necessitates the use of bespoke molds. To fulfill this requirement, a blend of Phase Change Material(PCM) and Ultra-High Performance Concrete(UHPC) is utilized. PCM endows the solution with recyclability, while UHPC facilitates the effortless execution of curvature in the mold fabrication process. However, it's worth mentioning that the melting point of PCM hovers around 58-64℃, and the heat emanating from UHPC's hydration process can potentially jeopardize the integrity of the PCM mold. Hence, experimental validation of the mold shape is a prerequisite. In the conducted experiment, UHPC was poured into two distinct mold types: one that incorporated a 3mm silicone sheet mounted on the fabricated PCM mold(Panel A), and the other devoid of the silicone sheet(Panel B). The experimental outcomes revealed that Panel A possessed a thickness of 3.793mm, while Panel B exhibited a thickness of 5.72mm. This suggests that the mold lacking the silicone sheet(Panel B) was more susceptible to the thermal effects of hydration. These investigations furnish invaluable fundamental data for the manufacturing of ultra-high strength irregular panels and PCM molds. They contribute substantially to the enrichment of comprehension and application of these materials within the realm of construction.

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.

An Evaluation of Flexural Performance of Composite Beam with Ultra High Performance Concrete Deck and Inverted T-Shaped Steel Girder (초고강도 콘크리트 바닥판과 역T형 강재 합성보의 휨 성능 평가)

  • Yoo, Sung-Won;Joh, Chang-Bin;Choi, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • In this paper, when the composite beam is made with UHPC deck and steel girder, the steel girder takes the form of the inverted-T shape without top flange because of high strength and stiffness of UHPC deck. There is no evaluation by experiment and analysis about the shear connector behavior on the web of steel girder and flexural behavior of inverted-T shape composite beam. By this reason, this study compares between experiment and analysis by using tension softening model of UHPC on the basis of flexural test results of 16 members considering compressive strength of UHPC, spacing of stud and thickness of deck as variables. The results of tensile strength of UHPC by inverse analysis were 6.57 MPa(in case of 120 MPa) and 9.57 MPa(in case of 150 MPa). In case of the test members with small stud spacing, the results of analysis and test were close clearly, and the test members with thick deck and low UHPC compressive strength also similar, but effects were small. As it compared between analysis and experiment totally, the results of analysis and experiment agree well. So the tension softening model of UHPC is reasonably reflected on the real behavior of composite beam of UHPC.

Evaluation of Hydration Heat Characteristics of Strontium Based Hydration Heat Reducer Addition on Concrete in Hot Weather Condition (서중환경에서 스트론튬계 수화열저감재를 사용한 콘크리트의 수화발열특성 평가)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Kil, Bae-Su;Koyama, Tomoyuki;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.189-196
    • /
    • 2020
  • When concrete member become large like in high rise buildings, hydration heat makes temperature difference inside and outside and cause cracks. The method of using latent heat material as heat reducer could be more accessible, usable and efficient than other methods. Therefore, many studies using PCM as heat reducer are being conducted. Since heat reducer have different reacting temperature, they may be affected by environmental factors like ambient and concrete mixing temperature but studies issuing this are insignificant. Therefore, this paper attempt to evaluate the hydration heat characteristics and quality of concrete using strontium-based PCM under hot weather conditions. As a result, when the strontium-based hydration heat reducer was mixed 3wt.% and 5wt.% in hot weather condition, hydration heat speed and heating rate could be reduced by 8%, 21%, and 75, 85 minutes compared to OPC, respectively. This is considered to be the phase change reaction is relatively promoted when the temperature is high and cause improve performance than room condition result. Later, comparing the efficiency of other types of P.C.M in hot weather condition, and conduct detailed reviews on the strength development in long-term age.

Effect of Different Energy Frames on the Impact Velocity of Strain Energy Frame Impact Machine (에너지 프레임 종류에 따른 변형에너지 프레임 충격시험장치의 충격속도)

  • PARK, Seung Hun;PARK, Jun Kil;TRAN, Tuan Kiet;KIM, Dong Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.363-375
    • /
    • 2015
  • This research investigated the effects of diameter and material of energy frame on the impact velocity or strain rate of Strain Energy Frame Impact Machine (SEFIM). The impact speed of SEFIM have been clearly affected by changing the diameter and material of the energy frame. The reduced diameter of the energy frame clearly increased the impact velocity owing to the higher strain at the moment of coupler breakage. And, titanium alloy energy frame produced the fastest speed of impact among three materials including steel, aluminum and titanium alloys because titanium alloy has faster wave velocity than steel. But, aluminium energy frame was broken during impact tests. In addition, the tensile stress versus strain response of high performance fiber reinforced cementitious composites at higher and wider strain rates between 10 and 72 /sec was successfully obtained by using four different energy frames.

Structural Design And Analysis of Haeundae Doosan We've The Zenith (해운대 두산 위브 더 제니스 구조설계)

  • Park, Ki-Hong;Park, Suk-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • Haeundae Doosan We've The Zenith project is adjacent to Suyoung-bay, now it is in the process of excavation and foundation work. The main use of the tower is residence which height is 300m and 80 floor, the highest residential reinforced concrete building through the Orient. It is comprised of 3 high- rised buildings and 1 low-rised building, the basement is 230m wide and 200m length sized mass structure. The lateral resistance system is acted effectively against the lateral load and satisfactorily against the wind vibration by the 4 direction extension of the center core wall($700{\sim}800mm$ thickness) and reinforced concrete column set around the slab. Flat-plate slab system(250mm thickness) is adjusted for the slab system and it enables effective work process and shortening the working term by minimizing the ceiling height and not needing to install perimeter beam and drop panel. The strength and serviceability of the structure is able to be monitored and estimated constantly through the health monitoring system during the construction and after the construction.

  • PDF

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.

An Experimental Study of Tension Properties on New Developed Up-Set Coupler (Up-Set Coupler 이음철근의 인장특성에 대한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kang, Tae-Sung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.109-115
    • /
    • 2008
  • As structures are getting super-rise and large-sized, introducing the construction methods such as prefabrication of bar-meshes and complex method are being actively discussed to pursue the high quality of reinforced concrete, the simplification of field works, and the reduction of duration, as well as the study on how to connect reinforcing rods, which occurs while applying the same methods, is in progress Also, the pressure welded joint is a kind of method that heats the ends of reinforced bars locally and joint them, and after the pressure welding, the vulnerable part in the reinforced bar occur. Thus, in the construction field, the throughout quality control is necessary because of the delayed duration and the lowered construct ability. In this study, of the traditional lap splice method and the mechanical splice one, the screw coupler, we tried to look into through experiments the prefabrication method of bar-meshes, a typical joint method usually used for the joint parts for PSC structures applying the reinforced bar with its big diameter, and a newly-developed up-set coupler method. And we also examined the characteristic of tensile.