• Title/Summary/Keyword: 초고강도콘크리트

Search Result 440, Processing Time 0.034 seconds

Advanced concrete for Skyscraper (초고층 구조물을 위한 특수 콘크리트)

  • Cho, Yun-Gu
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.106-111
    • /
    • 2008
  • Advanced concrete technology, which is the main construction technology of skyscraper, is dealt with in this paper. Advanced concrete technologies are classified into several types such as super high strength concrete(SHSC), low heat concrete(LHC), fire resistant concrete(FRC) and blast resistant concrete(BRC). The necessity, principal and application examples of advanced concrete technology are described respectively. In the last part of the paper, the introduction of HYUNDAI E&C's technology of Advanced concrete and future research trend are described.

  • PDF

Applicability of Expansive Additive on Reducing Shrinkage in Ultra-High-Strength-Concrete (팽창재에 의한 초고강도 콘크리트의 수축저감)

  • Seo, Kyong-Won;Baek, Ki-Hyun;Kim, Young-Jin;Kwak, Do-Yeon
    • Magazine of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • 본 연구에서는 초고강도 콘크리트의 자기수축 제어대책으로서 팽창재를 이용하는 경우의 적절한 첨가량 및 유효성에 대하여 확인하였고, 재팽창 현상에 대해서 검토하였다. 그 결과 물시벤트비가 극히 낮은 초고강도 콘크리트의 특성상 과첨가의 경우는 미반응의 팽창재가 잔존하고 재팽창 할 가능성이 있는 것으로 나타났으며 초고강도 콘크리트용의 팽창재로서는 가능한 미수화 팽창재가 잔존하지 않는 팽창재 즉 팽창성능을 충분히 가지면서 수화반응이 빠른 조강성의 비표면적이 큰 팽창재가 바람직한 것을 제안하고 있다.

A Basic Study on the Effects of Shrinkage.reducing Agent on the Autogenous Shrinkage of Super.high.strength Concrete (수축저감제가 초고강도콘크리트의 자기수축에 미치는 영향에 관한 기초적 연구)

  • Park, Hyun;Choi, Myung-Hwa;Kim, Hak-Young;Cho, Seung-Ho;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.401-402
    • /
    • 2009
  • This study prepared super high strength concrete, in which the water.binder ratio is very low, through experimental mixture, and conducted basic research on how super high strength concrete is affected by shrinkage reducing agent that is utilized to inhibit the shrinkage of concrete.

  • PDF

Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers (섬유 조합에 따른 초고성능 콘크리트의 인장거동)

  • Choi, Jung-Il;Koh, Kyung-Taek;Lee, Bang-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Ultra-High Strength Concrete(UHPC) has ultra-high material performance including high strength and high flowability. On the other hand it is less ductile than high ductile fiber reinforced cementitious composite. This study investigated the effect of combination of steel fiber and micro fiber on the tensile behavior of UHPC. Four types of UHPC containing combination of steel fiber, polyethylene(PE), polyvinyl alcohol(PVA), and basalt fiber were designed. And then uniaxial tension tests were performed to evaluate the tensile behavior of UHPC according to combination of fibers. And density was measured to evaluate whether micro fiber induces unintentional high pore or not. From the test results, it was exhibited that PE fiber with high strength is effective to improve the tensile behavior of UHPC and basalt fiber is effective to increase the cracking and tensile strength of UHPC. Furthermore, it was also verified that micro fiber does not make high pore.

A Study of 240MPa Ultra High Strength Concrete Properties Using High Flow Cement (하이플로 시멘트를 이용한 240MPa 초고강도 콘크리트 물성에 관한 연구)

  • Kim, Kang-Min;Yoo, Seung-Yeup;Song, Yong-Soon;Koo, Ja-Sul;Kang, Suck-Hwa;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.365-368
    • /
    • 2008
  • This research is related to 240MPa ultra-high strength concrete(UHSC) with extremely loss W/B ratio. For this development, High flow cement is mainly used which has a short reaction rate due to the high blaine and high early strength, which can make greater fluidity in case of very low W/C ratio. It made the best mixture using the mineral admixtures silica fume, slag powder and special admixture. For dispersibility and homogeneity of cement binder, cement of premix type is produced using omni-mixer. Moreover, it ensures the fluidity of ultra-high strength concrete(UHSC). For having a good fire performance, we made an experiment special coarse aggregate. As a result, we got 180MPa in case of water curing, 200MPa in case of steam curing and uniform UHSC of 240MPa in case of a special curing method.

  • PDF

Effect of fiber volume fraction on the tensile softening behavior of Ultra High Strength Steel Fiber-Reinforced Concrete (섬유혼입률이 초고강도 강섬유 보강 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Lee, Si-Young;Park, Gun;Hong, Sung-Wook;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.421-424
    • /
    • 2008
  • Ultra high strength steel fiber-reinforced concrete is characterized with high tensile strength and ductility. This paper revealed the influence of fiber volume fraction on the tensile softening behaviour of ultra high strength steel fiber-reinforced concrete and developed tensile softening model to predict the deformation capacity by finite element method analysis with experimental results. The initial stiffness of ultra high strength steel fiber-reinforced concrete was constant irrespective of fiber volume fraction. The increase of fiber volume fraction improved the flexural tensile strength and caused more brittle softening behaviour. Finite element method analysis proposed by Uchida et al. was introduced to obtain the tensile softening curve from three point notched beam test results and we proposed the tensile softening model as a function of fiber volume fraction and critical crack width.

  • PDF

A Convergence Study on the Reaction Injection Mold Using Ultra High Strength Concrete (초고강도 콘크리트를 이용한 반응 사출 금형에 관한 융합 연구)

  • Jaung, Jae-Dong;Kim, Hong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.211-217
    • /
    • 2020
  • There is an increasing demands of more efficient and economical ways of mold making according to the spreading trend of small quantity batch production system. Therefore, this study aims to examine the applicability of ultra high strength concrete, which has a compressive strength over 80MPa, as a mold material. The ultra high strength concrete has several advantages such as lower cost, lighter weight and convenience of shape making compared to the traditional mold materials. Although the strength of the ultra high strength concrete is lower than that of the tool steel, it was considered to be useful for small batch processes with relatively low pressure. Therefore, in this study, a prototype mold for reaction injection molding of polyurethane was developed using ultra high strength concrete and it was examined that the possibility and characteristics of concrete as a mold material.

A Study on Fundamental Range Setting for Strength declination in the Field of Ultra High Strength Concrete (초고강도 콘크리트 영역에서의 강도편차 범위 설정에 관한 기초적 연구)

  • Park, Hee-Gon;Lee, Jin-Woo;Kim, Yoo-Jin;Bae, Yeoun-Ki;Kim, Woo-Jae;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.385-388
    • /
    • 2008
  • Modern society is experiencing a high population density and a centralization of facilities. The clear trends in the construction field are aggrandizement, elevation and specialization of building structures. Such trends require improvements of skills in raising material performances, structuring, planning, designing, and increasing construction capacities. In order to procure high performance materials and construction techniques, a top-quality concrete should be used since it takes up a large part of the material. In recent years, active researches have been done on the ultra high strength concrete. Therefore, this experimental study is strength management to fixed quantity in the field of ultra-strong concrete.

  • PDF

A Basic Study on the Control of Autogenous Shrinkage of Super high strength Concrete Using Gypseous Expansive Additive (석고계 팽창재를 사용한 초고강도콘크리트의 자기수축 제어에 관한 기초적 연구)

  • Park, Hyun;Yoon, Ki-Hyun;Cho, Seung-Ho;Kim, Kwang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.439-440
    • /
    • 2009
  • Super high strength concrete tends to have compact tissue structure, and to have large reduction of volume by hydration reaction or large shrinkage by autogenous shrinkage. Thus, this study conducted basic research on the control of autogenous shrinkage of super high strength concrete using gypseous expansive additive.

  • PDF