• Title/Summary/Keyword: 철근콘크리트 지하구조물

Search Result 42, Processing Time 0.032 seconds

The evaluation of penetration protective performance using applied element method for reinforced concrete lining (AEM을 이용한 철근콘크리트 라이닝의 관입 방호성능 평가)

  • Joo, Gun-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.377-396
    • /
    • 2019
  • Explosion after penetration of a warhead in an underground structure generally causes considerable displacement, breakage and extensive damage to the target. Therefore, in order to reduce the damage effect, it is required to design an underground structure protection against penetration. In this study, major factors for improvement of penetration protection performance of reinforced concrete underground structures using applied element method are divided into strength (concrete UCS) and density (concrete thickness, reinforcement layers, reinforcement diameters, reinforcement spacings). Based on these major factors, this study performed numerical analysis of simulation of dynamic response by penetrators under various conditions and analyzed the results. The results of this study are expected to be used as basis materials to improve penetration protection performance of reinforced concrete underground structures.

Analysis of Crack characteristic on Concrete Cover for Subway Box Structure Due to Reinforcement Corrosion (철근부식으로 인한 지하철 박스구조물의 콘크리트 피복층 균열특성 분석)

  • Choi, Jung-Youl;Shin, Dong-Sub;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.727-732
    • /
    • 2022
  • Applying the calculated cross-sectional reduction due to the corroded rebar investigated in the field to the numerical analysis model, the damage pattern and delamination of concrete in the field showed a tendency relatively similar to the numerical analysis results. It was analyzed that when the expansion pressure due to corrosion of the reinforcing bar is greater than the tensile stress of the concrete, cracks are generated and the concrete cover can be fracture. As a result of this study, the correlation between the corrosion rate of reinforcing bars and the crack occurrence of the concrete cover of the subway box structure was verified based on the numerical analysis and field test results. To prevent rebar corrosion, the corrosion rate can be reduced by applying rust prevention to the reinforcing bar and changing the material. In the case of exposed to a corrosive environment, the tensile strength of the concrete is improved by adjusting the concrete compressive strength to secure durability against the expansion pressure caused by the corroded rebar.

Fire Endurance Estimate of Reinforced Concrete Structure Using Nonlinear Finite Element Method (비선형 유한요소해석을 이용한 철근콘크리트 구조물의 내화성능평가)

  • Byun, Sun-Joo;Im, Jung-Soon;Hwang, Jee-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.17-27
    • /
    • 2006
  • To estimate the retained strength of reinforced concrete structure after fire is very difficult because the complex behavior of structure is hard to understand during course of a fire. However, the damages which is caused by fire of the traffic facility infrastructure are enormous. Therefore the security against fire is important element that must not be overlooked. For this reason, an exact estimate method of the fire endurance is highly demanded. In this study, the validity of the nonlinear finite element method approach for the fire endurance of reinforced concrete structure is verified. The results of fire endurance estimate of underground road way by nonlinear finite element method approach are compared with those by ACI 216R-89.

Seismic Analysis of RC Subway Station Structures Using Finite Element Method (유한요소법을 이용한 철근콘크리트 지하철 정거장 구조물의 내진 해석)

  • Nam, Sang-Hyeok;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.225-233
    • /
    • 2003
  • Even though a lot of advanced researches on analysis, design, and performance evaluation of reinforced concrete (RC) under seismic action have been carried out, there has been only a few study on seismic analysis of underground RC structures surrounding soil medium. Since the underground RC structures interact with surrounding soil medium, a path-dependent soil model which can predict the soil response is necessary for analyzing behavior of the structure inside soil medium. The behavior of interfacial zone between the RC structure and the surrounding medium should be also considered for more accurate seismic analysis of the RC structure. In this paper, an averaged constitutive model of concrete and reinforcing bars for RC structure and path-dependent Ohsaki's model for soil are applied, and an elasto-plastic interface model having thickness is proposed for seismic analysis of underground RC structures. A finite element analysis technique is developed by applying aforementioned constitutive equations and is verified by predicting both static and dynamic behaviors of RC structures. Then, failure mechanisms of underground RC structure under seismic action are numerically derived through seismic analysis of underground RC station structure under different seismic forces. Finally, the changes of failure mode and the damage level of the structures are also analytically derived for different design cases of underground RC structures.

Influence of Inadequate Rebar Lap Position on Crack of Underground Box Slab (철근 겹침이음 위치 부적정이 지하박스 슬래브 균열 발생에 미치는 영향)

  • Choi, Jung-Youl;Jang, In-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.685-692
    • /
    • 2020
  • In this study, the experimental and analytical study were performed on the location of longitudinal cracks in the middle of underground box structures. The location where the longitudinal cracking occurred was investigated that the overlapping joint of the rebar and the section of maximum tensile stress generated. Using the finite element analysis, the strength reduction ratio of the rebar was estimated by lack of overlap joint length. As the result of adequacy investigation for the length of the overlap joint presented in the design criteria, it was analytically proved that the lack of the overlap joint length could be cause the decreasing cross-sectional force and concrete cracking. As the result of this study, the adequacy of the overlapping criterion in the current design criteria was confirmed based on the finite element analysis and actual field case. In the case of overlapping joints installed in inappropriate position, it was considered that a long term crack control would be need to ensure the sufficient safety factor for the designed cross-sectional force.

Collapse Behavior of Small-Scaled RC Structures Using Felling Method (전도공법에 의한 축소모형 철근콘크리트 구조물의 붕괴거동)

  • Park, Hoon;Lee, Hee-Gwang;Yoo, Ji-Wan;Song, Jeung-Un;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.381-388
    • /
    • 2007
  • The regular RC structures have been transformed into irregular RC structures by alternate load of RC structures during explosive demolition. Numerical simulation programs have contributed to a better understanding of large displacement collapse behavior during explosive demolition, but there remain a number of problems which need to be solved. In this study, the 1/5 scaled 1, 3 and 5 stories RC structures were designed and fabricated. To consider the collapse possibility of upper dead load, fabricated RC structures were demolished by means of felling method. To observe the collapse behavior of the RC structures during felling, displacement of X-direction (or horizontal), displacement of Z-direction (or vertical) md relative displacement angle from respective RC structures were analyzed. Finally explosive demolition on the scaled RC structures using felling method are carried out, collapse behavior by felling method is affected by upper dead load of scaled RC structures. Displacement of X and Z direction increases gradually to respective 67ms and 300ms after blasting. It is confirmed that initial collapse velocity due to alternate load has a higher 3 stories RC structures than 5 stories.

Collapse Modeling of model RC Structure Using Applied Element Method (AEM을 이용한 철근콘크리트 모형 구조물의 붕괴 모델링)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • In order to analyze collapse behavior of structure containing irregular and large displacement, many numerical analyses have been conducted. In this study, using a new method, Applied Element Method (AEM) for collapse analysis of structures, collapse behavior of model RC structures Is simulated. From these simulations results, displacement of X-direction (or horizontal) and displacement of Y-direction (or vertical) is similar to that of mode) RC structures. It is confirmed that collapse behavior of structures using AEN is reliable accurately simulated with that of model RC structures.

Execution Case Study on the Explosive Demolition of a Large-Section RC Special Structure (대단면 철근콘크리트 특수구조물 발파해체 시공 사례)

  • Park, Hoon;Suk, Chul-Gi
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • Recently, the number of industrial structures that must be demolished due to structural deterioration and unsatisfactory functional conditions has been increased. To minimize environmental hazardous factors created during the process of demolition, the explosive demolition method has been applied increasingly. This execution case was intended to describe an application of the explosive demolition method to the demolition of a Crusher & Screen structure, which was a large-section reinforced concrete special structure. It was deemed necessary due to its structural deterioration and unsatisfactory functional condition. Various pre-weakening processes and blasting patterns were applied to the large-section reinforced concrete members, and to reduce blasting vibration and impact vibration, time intervals were established for blasting in the same column and for blasting between blasting blocks. By applying the explosive demolition method to the demolition of a large-section reinforced concrete special structure, the explosive demolition was completed safely and efficiently, without causing any damage to surrounding facilities.

An Experimental Study on the Application of Cathodic Protection By Applying Zn-Al Metal Spray to an RC Structure (철근콘크리트 구조물에 Zn-Al 금속용사 전기방식 공법의 적용성에 관한 실험적 연구)

  • Han, Man-Hae;Yoo, Jo-Hyeong;Lim, Young-Chul;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.21-29
    • /
    • 2010
  • Cathodic Protection has been introduced as a method of protecting metals under the ground or sea from corrosion. Since 1970, it has been applied to reinforced concrete structures as a corrosion protection method. After 1990, it became used around the world, and its usability has been well confirmed. But this method has some problems in terms of construction and economy. To solve these problems, a Cathodic Protection Method using a highly-durable metal spray was developed. First, the specimen was covered with anodic materials (Zn, Al) by using metal spray. The corrosion protection performance was confirmed by measuring the corrosion current of the specimen. Through the experiment, it is possible to confirm that the Cathodic Protection Method using a high metal spray provides effective protection against corrosion to reinforced concrete structures.

The Study of Seismic Design for Underground RC Structure (지하 철근콘크리트 구조물의 내진설계에 관한 연구)

  • 조병완;문병옥;태기호;안제상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.867-872
    • /
    • 2002
  • The seismic design from the underground structures with the ground structures differently relative acceleration of ground and structure for, that period ci it was a condition where the recognition against the seismic design of the underground structure is insufficient because the decease damage does not very to that extent. Analysis result, earthquake hour section power increase one that price smiles from one part and when it applies a regular design hour safety rate 20%, seismic efficiency level satisfaction is it becomes feed with the fact that it will be able to augment the efficient characteristic of design.

  • PDF