• Title/Summary/Keyword: 철근의 영향

Search Result 939, Processing Time 0.029 seconds

Influence of the Diagonal Reinforcement around opening on the Structural Behavior of Reinforced Concrete Continuous Deep Beams (개구부 경사보강철근이 철근콘크리트 연속 깊은 보의 역학적 거동에 미치는 영향)

  • Yang, Keun-Hyeok;Sim, Jea-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.382-385
    • /
    • 2006
  • Objective of this study is to understand the diagonal reinforcement around openings on the control of diagonal crack, load distribution, and ultimate strength of reinforced concrete two-span continuous deep beams. Test results of four specimens showed that the strength lost by openings might be completed when diagonal reinforcement ratio was above 0.0014.

  • PDF

철근 콘크리트건물의 접지 및 피뢰설비 시스템 검토

  • 이광광
    • Electric Engineers Magazine
    • /
    • v.254 no.10
    • /
    • pp.34-40
    • /
    • 2003
  • the# star city 신축공사는 철골(판매시설), 철근콘크리트(주거시설)가 병행, 시공되고 대지와의 접촉면이 큰 고층 건축물로 각종의 다양한 전기, 전자, 통신설비 기기가 도입되고 있어 문제가 되는 것이 접지의 시공법이다. 건축물에 있어서 뇌보호란 크게 외부 뇌보호와 내부 뇌보호로 나눌 수 있으며 외부 뇌보호는 직격뢰로 부터 건물등을 보호하는 것이고 내부 뇌보호는 낙뢰시 전위상승으로 인한 영향 및 뇌전류의 전자효과를 저감하는 것으로 특히 과전압 내성이 작은 전자기기 등을 대상으로 하는 보호이다.

  • PDF

Prediction of Shear Strength Using Artificial Neural Networks for Reinforced Concrete Members without Shear Reinforcement (인공신경망을 이용한 전단보강근이 없는 철근콘크리트 보의 전단강도에 대한 예측)

  • Jung, Sung-Moon;Han, Sang-Eul;Kim, Kang-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2005
  • Due to the complex mechanism and various parameters that affect shear behavior of reinforced concrete (RC) members, models on shear tend to be complex and difficult to utilize for design of structural members, and empirical relationships formulated with limited test data often work lot members having a specific range of influencing parameters on shear. As an alternative approach tot solving this problem, artificial neural networks have been suggested by some researchers. In this paper, artificial neural networks were used to predict shear strengths of RC beams without shear reinforcement. Especially, a large database that consists of shear test results of 398 RC members without shear reinforcement was used for artificial neural network analysis. Three well known approaches for shear strength of RC members, ACI 318-02 shear provision, Zsutiy's equation, and Okamura's relationship, are also evaluated with test results in the shear database and compared with neural network approach. While ACI 318-02 provided inaccurate predictions for RC members without shear reinforcement, the empirical equations by Zsutty and Okamura provided more improved prediction of Shear strength than ACI 318-02. The artificial neural networks, however provided the best prediction of shear strengths of RC beams without shear reinforcement that was closest to test results.

An Experiemtnal Study on the Air Permeability Effect on Concrete Carbonation (콘크리트의 중성화에 영향을 미치는 투기성에 관한 실험적 연구)

  • 권영진;김무한;강석표;유재강
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.277-284
    • /
    • 2001
  • Hardened concrete contains pores of varying types and sizes, and therefore the transport of air through concrete can be considered. The rate of permeability will not only depends on the continuity of pores, but also on the moisture contents in concrete and finishing material on concrete. Also it knows that the durability of reinforced concrete structure is concerned with air permeability which effects on the carbonation occurred by invasion of CO2 gas and the corrosion of steel bar occurred by O$_2$. In this paper, the effects of curing conditions and finishing materials on carbonation and air permeability are investigated according to the accelerated carbonation test. As results, carbonation velocity and air permeability are effected by curing conditions and finishing materials, and air permeability coefficient is effected by moisture content. Also the relationship between carbonation velocity coefficients and air permeability coefficients has been quite well established.

The Behavior of RC Columns on the Variation of Performance Influencing Factor (성능영향인자 변화에 따른 철근 콘크리트 기둥의 거동)

  • Yun, Sung-Hwan;Choi, Min-Choul;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.281-284
    • /
    • 2008
  • Performance evaluation exposing the performance of structure is affected by the material and structural characteristics. these should be necessary for the analysis about the effect of structure performance. Thus, to evaluate the structural performance affected the material properties and structural characteristics, firstly it is conducted the eigenvalues analysis and non-linear static analysis of the structure, secondly it is analyzed the performance influence factor of the structure. The performance influence factors affecting the performance of structure divided into five classes(strength of concrete, longitudinal and transverse reinforcement, aspect ratio, axial force). From the result of analysis about the change of performance influence factor, the more the strength of concrete is increasing, the more the maximum shear force is increasing and the yield displacement is not changed, the more longitudinal reinforce is increasing, the more yield displacement and the maximum basis shear force is increasing, the more the transverse reinforce is increasing, the change of maximum basis shear force is trivial. The yield displacement of structure is increasing and the maximum basis shear force is decreasing by increasing the aspect ratio, the more the axial force increases, the more yield displacement and maximum basis shear force decease.

  • PDF

A Parametric Study on the Loading Rate Sensitivity of R/C Element Behavior (R/C 부재의 하중재하속도 변화에 따른 민감성 연구)

  • 심종성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.38-43
    • /
    • 1989
  • An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was uses to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections were also suggested.

  • PDF

Analysis of Prestressed Concrete Continuous Members with Unbonded Tendons (부착되지 않은 텐돈을 갖는 PS 콘크리트 연속부재의 해석적 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.197-208
    • /
    • 1995
  • The prestressed concrete continuous members with unbonded tendons were investigated while comparing the experimental data with the analytical results. The comparison was carried out with the program TAPS which can take into account the unbonded tendon effects. The subjects that were interested included the load-deflection response, the design equations for the tendon stress at failure, the effects of bonded reinforcements, the effects of span-depth ratio, the effects of loading type. In this paper, contiriuous prestressed concrete members with unbonded ten dons were investigated. Of twelve tests with continuous members, six were two-span beams and six were three span one-way slats. Analytical results were compared favorably with experimental data and disclosed that the tendon stress at flexural failure is the function of the amount of bonded reinforcements, the loading types and patterns, and the tendon profile.

A Study on Reducing the Corrosion of Steel Rebar Embedded in Concrete using Various Materials of Coating (다양한 코팅재를 이용한 콘크리트 중 철근의 부식 억제에 관한 연구)

  • Song, Il-Hyun;Lee, Yong-Soo;Ryou, Jae-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.179-180
    • /
    • 2010
  • The literature of present study was performed with content of chloride by total 6 level. After casting, and then, to measure the results of corrosion in a quick time used accelerated method of corrosion during 20 weeks. Both Galvanic and Half-cell for 20 weeks was used to model the initial time to corrosion, and then current of corrosion was measured by using Linear polarization at the end of cycling. The processing of steel used in concrete is same way as the case of mortar and also the initial time of corrosion was measured.

  • PDF

Reliability Analysis Models for Maintenance of bridge structures (교량구조물의 유지관리를 위한 신뢰성 해석 모델)

  • Kim, Jong-Gil;Sohn, Yong-Woo;Lee, Cheung-Bin;Ahn, Young-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.251-261
    • /
    • 2004
  • Recently, the corrosion and aging of bridge structures are of great concern impractical The uncertainties of the corroded reinforced bars in concrete influence not only the safety of the bridge structures, but also the flexural strength of reinforced concrete members. This paper considers these uncertainties by providing a reliability-based framework and show that the identification of the optimum maintenance scenario is a straightforward process. This is achieved by using a computer pro망am for Life Cycle Cost Analysis of Deteriorating Structures (LCCADS). This program can consider the effects of various types of actions on the reliability index profile of a deteriorating structures.

Study on Fatigue Life of Continuously Reinforced Concrete Pavement with Design Parameter (설계변수별 연속철근 콘크리트 포장의 피로수명 연구)

  • Park, Jong-Sup;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • A laboratory investigation is conducted to characterize and quantify fatigue lives of continuously reinforced concrete pavements (CRCP) with initial design parameters. Eight specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on each initial design parameter. The comparison indicates that the fatigue lives of CRCP specimens with initial cracks increases with increasing the initial crack spacing, and CRCP specimens with reinforcements at top of the concrete slab have more fatigue lives than those with reinforcements at midheight of the concrete slab. In addition, the fatigue lives were significantly affected by soil conditions under the CRCP specimens. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.