• Title/Summary/Keyword: 천음속유동

Search Result 89, Processing Time 0.037 seconds

Grid Convergence on Surface Pressure Distribution over the RAE-A Wing-Body Configuration (RAE-A 날개-동체 형상의 압력 분포에 대한 격자 수렴성 연구)

  • Kim, Ki Ro;Park, Soo Hyung;Sa, Jeong Hwan;Cho, Kum Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.226-232
    • /
    • 2017
  • Surface pressure distributions over the RAE-A wing-body configuration were investigated and the grid convergence along the streamwise, spanwise, and circumferential directions was numerically studied. Flow analysis in subsonic and transonic conditions was conducted using the $k-{\omega}$ Wilcox-Durbin+ turbulence model. Surface pressure distributions for subsonic flows were well matched, but those for transonic shocked flows showed a little discrepancy with the experimental data. A cubic spline extrapolation method was applied in order to investigate the grid convergence. This method presented that the grid resolution in the circumferential direction is the most important grid parameter. A refined grid system was made based on the grid convergence study and provided more accurate prediction, especially on the symmetric body surface of RAE-A configuration.

Aerodynamic analysis of flow type and angle of attack around a NACA0012 airfoil (NACA0012 Airfoil의 받음각과 유동형태에 따른 공력특성 분석)

  • Yun, Jeong-No;Yang, Seung-Deok;Jo, Tae-Hyeon;Lee, Do-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.53-56
    • /
    • 2012
  • 항공기에 작용하는 공기역학적 힘인 양력과 항력은 항공기 날개 설계에서 성능을 좌우하는 성능지수로 주로 이용된다. 본 연구에서는 NACA0012 airfoil 모델의 공력특성을 EDISON 열유체 시뮬레이션 프로그램(이하 EDISON)을 이용해 분석하고 검증해 보았다. 아음속 유동의 특정 조건에서 받음각과 유동형태에 따른 공력특성 분석을 수행하여 받음각에 따라 변하는 양력계수, 항력계수, 양항비, 실속각과 천음속 유동 조건에 맞추어진 마하수 0.5~1.22 영역에서 변하는 항력계수를 기존 데이터와 비교 검증했다.

  • PDF

Effect of Divergent Trailing Edge Modification of Supercritical Airfoil in Transonic Flow (천음속유동에서 초임계익형 후연확대수정의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.183-189
    • /
    • 1997
  • The computation of the flow around a supercritical airfoil with a divergent trailing edge(DTE) modification(DLBA 243) is compared to that of original supercritical airfoil(DLBA 186). For this computation, Reynolds-Averaged Navier-Stokes equations are solved with a linearized block implicit ADI method and a mixing length turbulence model. Results show the effects of the shock and separated flow regions on drag reduction due to DTE modification. Results also show that DTE modification accelerates the boundary layer flow near the trailing edges which has an effect similar to a chordwise extension that increases circulation and is consistent with the calculated increase in the recirculation region in the wake. Airfoil with DTE modification achieves the same lift coefficient at a lower incidence and thus at a lower drag coefficient, so that lift-to-drag ratio is increased in transonic cruise conditions compared to the original airfoil. The reduction in drag due to DTE modification is associated with weakening of shock strength and delay of shock which is greater than the increase in base drag.

  • PDF

Subsonic/Transonic Airfoil Design Using an Inverse Method (Inverse 기법을 이용한 아음속/천음속 익형 설계)

  • Lee Young-Ki;Lee Jae-Woo;Byun Yung-Hwan
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • An inverse method for the subsonic and transonic airfoil design was developed using the Euler equations. Two testcases were performed. One was a verification of the method using the supercritical airfoil of the Korean mid-sized (100 passengers class) transport aircraft. The other was the design of an airfoil showing a good cruising performance (L/D ratio) in the high subsonic flow regime. These testcases demonstrated the efficiency and the robustness of the design method in the present study.

  • PDF

The Calculation of Three-Dimensional Viscous Flow in a Transonic, Multi-Stage Axial Compressor (다단축류압축기내의 천음속 점성유동에 대한 삼차원 수치해석)

  • Yi H. W.;Kim K. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.181-189
    • /
    • 1998
  • A numerical study based on the three-dimensional Reynolds averaged Navier-Stokes equations is presented to analyze the transonic flowfield through two-stage axial compressor. Explicit four-step Runge-Kutta scheme is used for solution algorithm, and local time step and implicit residual averaging are introduced for enhancing the convergency. Artificial dissipation model is adopted to assure the stability of solution. The solver is coupled with Baldwin-Lomax model to describe turbulence. To avoid calculating the unsteady flow, a mixing process is modeled at a station between rotating and stationary blade rows. Results show a variety of important physical phenomena. Comparison of the flowfields with and without tip clearance shows that the effect is considerable in this flowfield. Comparisons with experimental data carried out to validate the calculational results show reasonable agreements. Some remedies are also suggested to improve the revealed problems.

  • PDF

Aeroelastic Analyses of Space Rocket Configuration Considering Viscosity Effects (유동점성효과를 고려한 우주발사체 형상의 천음속 공탄성해석)

  • Kim, Yo-Han;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.64-71
    • /
    • 2011
  • In this study, steady and unsteady aerodynamic analyses of a huge rocket configuration have been conducted in a transonic flow region. The launch vehicle structural response are coupled with the transonic flow state transitions at the nose of the payload fairing. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to the rocket configurations. Also, it is typically shown that the current computation approach can yield realistic and practical results for rocket design and test engineers.

  • PDF

Control of the Base Pressure of the Supersonic Jet Using an Orifice (오리피스를 사용한 초음속 제트에서의 기저 압력 제어에 관한 연구)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.51-57
    • /
    • 2012
  • Base pressure at the base of high-speed jet has long been one of the important issues from both the view points of fluid dynamics as well as practical engineering applications. The base pressure characteristics of incompressible flows have been well known to date. However, the base pressure at transonic or supersonic speeds would be different due to the compressibility effects and shock waves. In the present paper, a CFD study has been performed to understand the base pressure characteristics at transonic and supersonic speeds, prior to experimental work. An emphasis is placed on the control of the base pressure using a simple orifice. A variety of supersonic jet plumes have been explored to investigate the flow variables influencing the base pressure. The results obtained were validated with existing experimental data and discussed in terms of the base pressure and discharge coefficient of the orifice.

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.

Numerical Simulation of Three-Dimensional Compressible Viscous Flow Characteristics in Axial-Flow Turbines (축류터빈 내부의 3차원 압축성 점성 유동특성에 관한 수치 시뮬레이션)

  • Chung H. T.;Jung H. N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.42-48
    • /
    • 2004
  • Numerical simulation of viscous compressible flow in turbomachinery cascade involves many problems due to the complex geometry of blade but also flow phenomena. In the present study, numerical investigations have been performed to examine the three-dimensional flow characteristics inside the transonic linear turbine cascades using a commercial code, FLUENT. Multi-block H-type grids are applied to the high-turning turbine rotor blades and comparisons with the experimental data and the numerical results have been done. In addition, the effects of turbulence models on the prediction of the endwall flows are analyzed in the sense of the flow compressibility.

  • PDF

Navier-Stokes Analysis of Two Dimensional Cascade Flow (2차원 익렬유동의 Navier-Stokes 해석)

  • 정희택;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.313-324
    • /
    • 1992
  • Two-dimensional Navier-Stokes code has been developed for analysis of turbomachinery blade rows and other internal flows. The Navier-Stokes equations are written in a Cartesian coordinate system, then mapped into a generalized body-fitted coordinate system. All direction of viscous terms are incorporated and turbulent effects are modeled using the Baldwin-Lomax algebraic model. Equation are discretized using finite difference method on the C-type grids and solved using implicit LU-ADI decomposition scheme. Calculations are made at a VKI turbine cascade flow in a transonic wind-tunnel and compared to experimental data. Present numerical scheme is shown to be in good agreement with the previous experimental results and simulates the two-dimensional viscous flow phenomena.