• Title/Summary/Keyword: 천리안위성

Search Result 196, Processing Time 0.03 seconds

An Estimation of the of Tropical Cyclone Size Using COMS Infrared Imagery (천리안 위성 적외영상 자료를 이용한 태풍강풍반경의 산출)

  • Lee, Yoon-Kyoung;Kwon, MinHo
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.569-573
    • /
    • 2015
  • An algorithm to symmetric radius of $15ms^{-1}$ isotaches of tropical cyclones is suggested using infrared (IR) imagery of geostationary satellite. It is assumed that symmetric tangential winds outside the maximum winds exponentially decrease with the radial distances of the tropical cyclone, which has a clear eye-wall structure. Four parameters for estimation of the tropical cyclone size are center location, maximum sustained wind, radius of the maximum wind, and relaxation coefficient for the decreasing rate with distances of the tropical cyclone. The estimation results are limitedly verified as comparing to surface winds of polar orbiting satellite such as ASCAT data.

Estimation and Statistical Characteristics of the Radius of Maximum Wind of Tropical Cyclones using COMS IR Imagery (천리안 위성 적외 영상 자료를 이용한 태풍의 최대풍속반경 산출 및 통계적 특성)

  • Kwon, MinHo
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • The objective methods estimating the radius of maximum wind (RMW) of tropical cyclones (TCs) are discussed using infraed (IR) imagery of geostationary satellite, and an alternative method is suggested that can estimate RMW in the TCs having eyes using IR imagery. The RMW-estimating methods are based on the characteristic structure of the eyewall of a tropical cyclone. RMW is dependent upon the radius of the eye and the distance from the center to the top of the most developed convective cloud. In order to test these methods, blackbody brightness temperature of Korean geostationary satellite, COMS (Communication, Ocean, and Meteorological Satellite) IR imagery are utilized in this study. The estimated RMWs are compared with surface winds of ASCAT (Advanced Scatterometer) of a polar orbiting satellite.

Retrieving Volcanic Ash Information Using COMS Satellite (MI) and Landsat-8 (OLI, TIRS) Satellite Imagery: A Case Study of Sakurajima Volcano (천리안 위성영상(MI)과 Landsat-8 위성영상(OLI, TIRS)을 이용한 화산재 정보 산출: 사쿠라지마 화산의 사례연구)

  • Choi, Yoon-Ho;Lee, Won-Jin;Park, Sun-Cheon;Sun, Jongsun;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.587-598
    • /
    • 2017
  • Volcanic ash is a fine particle smaller than 2 mm in diameters. It falls after the volcanic eruption and causes various damages to transportation, manufacturing industry and respiration of living things. Therefore diffusion information of volcanic ash is highly significant for preventing the damages from it. It is advantageous to utilize satellites for observing the widely diffusing volcanic ash. In this study volcanic ash diffusion information about two eruptions of Mt. Sakurajima were calculated using the geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) and polar-orbiting satellite, Landsat-8 Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). The direction and velocity of volcanic ash diffusion were analyzed by extracting the volcanic ash pixels from COMS-MI images and the height was retrieved by adjusting the shadow method to Landsat-8 images. In comparison between the results of this study and those of Volcanic Ash Advisories center (VAAC), the volcanic ash tend to diffuse the same direction in both case. However, the diffusion velocity was about four times slower than VAAC information. Moreover, VAAC only provide an ash height while our study produced a variety of height information with respect to ash diffusion. The reason for different results is measured location. In case of VAAC, they produced approximate ash information around volcano crater to rapid response, while we conducted an analysis of the ash diffusion whole area using ash observed images. It is important to measure ash diffusion when large-scale eruption occurs around the Korean peninsula. In this study, it can be used to produce various ash information about the ash diffusion area using different characteristics satellite images.

GOCI Products Re-processing System (GPRS) Using Server Virtualization and Distributed Processing (서버가상화 및 분산처리를 이용한 천리안해양관측위성 산출물 재처리 시스템)

  • Yang, Hyun;Ryu, Jeung-Mi;Choi, Woo-Chang;Han, Hee-Jeong;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.125-134
    • /
    • 2017
  • Recent advance in the satellite-based remote sensing technology demands abilities to efficiently processthe massive satellite data. In thisstudy, we focused on developing GOCI Products Reprocessing System (GPRS) based on server virtualization and distributed processing in order to efficiently reprocess massive GOCI data. Experimental results revealed that GPRS allows raising the usage rates of memory and central processing unit (CPU) up to about 100% and 75%, respectively. This meansthat the proposed system enables us to save the hardware resources and increase the work process speed at the same time when we process massive satellite data.

Study on the temporal and spatial variation in cold water zone in the East Sea using satellite data (위성자료를 이용한 동해안 냉수대의 시공간적 변화 분석 연구)

  • Yoon, Suk;Yang, Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.703-719
    • /
    • 2016
  • We investigated the changes with temporal and spatial movements of cold water events in summer season around the East Sea of Korea. Several data analyses were performed based on the various environmental factors using satellite and in-situ (winds, air/sea surface temperatures) data in the summer season during 2013. For analyzing the influence of cold water life cycle we employed AVISO geostrophic current and daily Geostationary Ocean Color Imager (GOCI) chlorophyll concentration (chl) data. Also, we used daily Advanced Very High Resolution Radiometer-Sea Surface Temperature (AVHRR-SST) data to trace the movements of cold water events. We found out the cold water events occurred in the early summer season and disappeared in the late summer season, and the cold water life cycle is repeated in this period. Additionally, we could show that the chl were increased in late summer season due to the inertial influence of cold water zone.

Statuses of World Governments' Space Activities and Space Markets in 2011 (2011년 세계 각국의 우주분야 투자 및 우주산업 현황)

  • Choe, Nam-Mi
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.3-14
    • /
    • 2011
  • The current space activities are soaring ever since the first human flight to outer space 50 years ago and the first satellite launch 54 years ago. 74 space launch vehicles were launched in 2010, up from average 66 yearly in 2000s, and 900 operational satellites are currently in orbit around Earth. Space has become a worthwhile investment for governments as space assets become vital to national social, economic, and technological development as well as contributing their national defense and security program. The world governments' investments on space programs have reached a historical peak of $71.5 billion in 2010. However, the growth of government funding for space has slowed down posting only a 2% growth rate since 2009 while 9 % compound annual growth rate experienced by world's space expenditures between 2004 and 2009. Korea invested $158 million in 2011, experienced strong decrease with a 16% compound annual growth rate since 2008. In this paper the current statuses of world governments' funding for space program and space market were presented and the current issues on the Korean space budget policy were reviewed.

  • PDF

Study on the Prediction of Turning Point of Typhoon Tracks using COMS Water Vapor Images (천리안 수증기 영상을 이용한 태풍진로의 전향위치 예측 연구)

  • Kim, Jong-Seok;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.35 no.3
    • /
    • pp.168-179
    • /
    • 2014
  • The purpose of this study focuses on the prediction time and location of turning-point of typhoon tracks using the water vapor images of Communication, Ocean and Meteorological Satellite (COMS) which has a very short observation interval. It targets a more accurate prediction of turning-point of typhoon tracks through the relationship between dry slot and northern/southern oscillations of jet stream. Jet stream moves by the position of jet streak and the ${\upsilon}$-component velocity of geostrophic wind. If the ${\upsilon}$-component of geostrophic wind gets stronger toward south, jet stream develops into a circular jet. In that condition, dry slot in satellite water vapor imagery extends toward south, and typhoon track turns as the distance of curved moisture band (CMB) gets narrowed down. If the interval of CMB is below $15^{\circ}$ of latitude, the typhoon track is turning toward north or northeast within 24 hours. As a result, typhoon track showed that when dry slot position was located less than $32^{\circ}N$, typhoon turned its track at $20-23^{\circ}N$ ($1^{th}$ Kong-Rey 2007 and $17^{th}$ Jelawt at 2012), and when in $35^{\circ}N$ above, it turned at $27^{\circ}N$ ($4^{th}$ Man-yi 2007).

Evaluation of Clear Sky Models to Estimate Solar Radiation over the Korean Peninsula (한반도의 일사량 추정을 위한 청천일 모델의 비교 평가)

  • Song, Ahram;Choi, Wonseok;Yun, Changyeol;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.415-426
    • /
    • 2015
  • Solar radiation under a clear sky is a important factor in the process by which meteorological satellite images are converted into solar radiation maps, and the quality of estimations depends on the accuracy of clear sky models. Therefore, it is important to select models appropriate to the purpose of the study and the study area. In this instance, complex models were applied using Linke turbidity, including ESRA, Dumortier, and MODTRAN, in addition to simple models such as Bourges and PdBV, which consider only the solar elevation angles. The presence of cloud was identified using the Communication, Ocean, and Meteorological Satellite and the Meteorological imager (COMS MI), and reference data were then selected. In order to calculate the accuracy of the clear sky models, the concepts of RMSE and MBE were applied. The results show that Bourges and PdBV produced low RMSE values, while PdBV had relatively steady RMSE values. Also, simple models tend to underestimate global solar irradiation during spring and early summer. Conversely, in the winter season, complex methods often overestimate irradiation. In future work, the cause of overestimation and other factors will be analyzed and the clear sky models will be adjusted in order to make them suitable for the Korean Peninsula.

Sakurajima volcano eruption detected by GOCI and geomagnetic variation analysis - A case study of the 18 Aug, 2013 eruption - (천리안 위성영상에 감지된 사쿠라지마 화산분화와 지자기 변동 분석 연구 - 2013년 8월 18일 분화를 중심으로 -)

  • Kim, Kiyeon;Hwang, Eui-Hong;Lee, Yoon-Kyung;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.259-274
    • /
    • 2014
  • On Aug 18, 2013, Sakurajima volcano in Japan erupted on a relatively large-scale. Geostationary Ocean Color Imager (GOCI) had used to detect volcanic ash in the surrounding area on the next day of this eruption. The geomagnetic variation has been analyzed using geomagnetic data from Cheongyang observatory in Korea and several geomagnetic observatories in Japan. First, we reconstruct geomagnetic data by principal component analysis and conduct semblance analysis by wavelet transform. Secondly, we minimize the error of solar effect by using wavelet based semblance filtering with Kp index. As a result of this study, we could confirm that the geomagnetic variation usually occur at the moment of Sakurajima volcano eruption. However, we cannot rule out the possibilities that it could have been impacted by other factors besides volcanic eruption in other variation's cases. This research is an exceptional study to analyze geomagnetic variation related with abroad volcanic eruption uncommonly in Korea. Moreover, we expect that it can help to develop further study of geomagnetic variation involved in earthquake and volcanic eruption.

Estimation of Surface Reflectance by Utilizing Single Visible Reflectance from COMS Meteorological Imager - Analysis of BAOD correction effect - (천리안위성 기상 탑재체의 가시 채널 관측을 이용한 지표면 반사도 산출 - 배경광학두께 보정의 효과 분석 -)

  • Kim, Mijin;Kim, Jhoon;Yoon, Jongmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.627-639
    • /
    • 2014
  • Accurate correction of surface effect from back scattered solar radiance is one of key issue to retrieve aerosol information from satellite measurements. In this study, two different methods are applied to retrieve surface reflectance by using single visible channel measurement from meteorological imager onboard COMS. The first one is minimum reflectance method, which composes the minimum value among previously measured reflectances at each pixel over a certain search window length. This method assumes that the darkest pixel corresponds to the aerosol-free condition, and deduces surface reflectance by correcting atmospheric scattering from the measured visible reflectance. The second method, named as the "atmospheric correction method" in this study, estimates the result by correcting aerosol and atmospheric scattering with ground-based observation of aerosol optical properties. The purpose of this study is to investigate the retrieval accuracy of the widelyused minimum reflectance method. Also, the retrieval error caused by the loading of background aerosol is mainly estimated. The comparison between surface reflectances retrieved from the two methods shows good agreement with the correlation coefficient of 0.87. However, the results from the minimum reflectance method are slightly overestimated than the values from the atmospheric correction method when surface reflectance is lower than 0.2. The average difference between the two results is 0.012 without the background aerosol correction. By considering the background aerosol effect, however, the difference is reduced to 0.010.