Browse > Article
http://dx.doi.org/10.14191/Atmos.2012.22.4.473

Estimation and Statistical Characteristics of the Radius of Maximum Wind of Tropical Cyclones using COMS IR Imagery  

Kwon, MinHo (Ocean Circulation and Climate Research Division, Korea Institute of Ocean Science & Technology)
Publication Information
Atmosphere / v.22, no.4, 2012 , pp. 473-481 More about this Journal
Abstract
The objective methods estimating the radius of maximum wind (RMW) of tropical cyclones (TCs) are discussed using infraed (IR) imagery of geostationary satellite, and an alternative method is suggested that can estimate RMW in the TCs having eyes using IR imagery. The RMW-estimating methods are based on the characteristic structure of the eyewall of a tropical cyclone. RMW is dependent upon the radius of the eye and the distance from the center to the top of the most developed convective cloud. In order to test these methods, blackbody brightness temperature of Korean geostationary satellite, COMS (Communication, Ocean, and Meteorological Satellite) IR imagery are utilized in this study. The estimated RMWs are compared with surface winds of ASCAT (Advanced Scatterometer) of a polar orbiting satellite.
Keywords
Radius of maximum wind; tropical cyclone; blackbody brightness temperature; COMS; ASCAT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lajoie, F. and K. Walsh, 2008: A technique to determine the radius of maximum wind of a tropical cyclone. Wea. forecasting, 23, 1007-1015.   DOI   ScienceOn
2 Montgomery, M. T. and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435-465.   DOI   ScienceOn
3 Olander, T. L. and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287-298.   DOI   ScienceOn
4 Velden, C. S. and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205-223.   DOI   ScienceOn
5 강시완, 전기천, 박광순, 방경훈, 2002: 해상풍 관측자료에 근거한 태풍 해상풍모형간의 상호비교. 한국해양학회지, 7(3), 100-107.
6 박준동, 손은하, 김윤재, 김금란, 박종서, 2008: 위성마이크로파와 적외센서 자료를 이용한 태풍 강풍반경 산출 및 검증. 2008년도 한국기상학회 가을학술대회 논문집, 274-275.
7 하경자, 김기영, 여미현, 1997: GMS TBB를 이용한 태풍 최대 풍속 반경의 추정. 한국기상학회지, 33(4), 677-690.
8 Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational significance. Wea. Forecasting, 18, 32-44.   DOI   ScienceOn
9 Goodberlet, M. A., C. T. Swift, and J. C. Wilkerson, 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J. Geophys. Res., 94, 14547-14555.   DOI
10 Hsu, S. A. and A. Babin, 2005: Estimating the radius of maximum wind via satellite during Hurricane Lili (2002) over the Gulfof Mexico. Natl. Wea. Assoc. Electron. J., 2005-EJ3.
11 Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner-core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287-1311.   DOI
12 Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89-101.   DOI   ScienceOn
13 Kuo, H. L., 1959: Dynamics of convective vortices and eye formation. The Atmosphere and Sea in Motion. B. Bolin, Ed., Rockefeller Inst. Press, 413-424.