• Title/Summary/Keyword: 차분방법

Search Result 815, Processing Time 0.022 seconds

Improving Non-Profiled Side-Channel Analysis Using Auto-Encoder Based Noise Reduction Preprocessing (비프로파일링 기반 전력 분석의 성능 향상을 위한 오토인코더 기반 잡음 제거 기술)

  • Kwon, Donggeun;Jin, Sunghyun;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.491-501
    • /
    • 2019
  • In side-channel analysis, which exploit physical leakage from a cryptographic device, deep learning based attack has been significantly interested in recent years. However, most of the state-of-the-art methods have been focused on classifying side-channel information in a profiled scenario where attackers can obtain label of training data. In this paper, we propose a new method based on deep learning to improve non-profiling side-channel attack such as Differential Power Analysis and Correlation Power Analysis. The proposed method is a signal preprocessing technique that reduces the noise in a trace by modifying Auto-Encoder framework to the context of side-channel analysis. Previous work on Denoising Auto-Encoder was trained through randomly added noise by an attacker. In this paper, the proposed model trains Auto-Encoder through the noise from real data using the noise-reduced-label. Also, the proposed method permits to perform non-profiled attack by training only a single neural network. We validate the performance of the noise reduction of the proposed method on real traces collected from ChipWhisperer board. We demonstrate that the proposed method outperforms classic preprocessing methods such as Principal Component Analysis and Linear Discriminant Analysis.

The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam (사방댐 위치변화에 따른 토석류의 충격력 해석에 관한 연구)

  • Kim, Sung-Duk;Lee, Ho-Jin;Chang, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.409-418
    • /
    • 2019
  • Debris flows occur in mountainous areas due to heavy rains resulting from climate change and result in disasters in the downstream area. The purpose of this study is to estimate the impact force of a debris flow when a check dam according is installed in various locations in the channel of a highly mountainous area. A Finite Differential Element Method (FDM) model was used to simulate the erosion and deposition based on the equation for the mass conservation and momentum conservation while considering the continuity of the fluid. The peak impact force from the debris flow occurred at 0 to 5 sec and 15 to 20 sec. When the supplied water discharge was increased, greater peak impact force was generated at 16 to 19 sec. This means that when increasing the water supply, the velocity of the debris flow became faster, which results in increased energy of the consolidation between the particles of the water and the sediment made. If a number of check dams were to be set up, it would be necessary to investigate the impact force at each location of the check dam. The results of this study could provide useful information in predicting the impact force of the debris flow and in installing the check dams in appropriate locations.

Real-time Reservoir Dam Status Evaluation System Using Wireless Sensor Network System (무선 센서 네트워크 시스템을 이용한 실시간 저수지 댐의 상태평가 시스템)

  • Yoo, Chanho;Kim, Seungwook;Hwang, Jungsoon;Na, Gihyuk;You, Kwangho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.41-46
    • /
    • 2018
  • The wireless sensor network system has the advantage of confirming the behavior of the entire facility by improving the disadvantages of conventional monitoring system. As a result, it is widely proposed as safety diagnosis and measurement of structures, water management systems, and management systems for dam structures. However, there is a lack of research that can evaluate the condition of facilities such as safety at the same time as monitoring. In this study, it is proposed a wireless sensor network system which can evaluate the behavior characteristics of facilities and evaluate the safety status for improving the technical disadvantages on conventional monitoring system. The geotechnical risk factors for the reservoir dam facility were evaluated and the limit values for the risk factors causing the failure of the facility were set. In other words, the system was set up so that the risk factors can be measured and the limit status can be evaluated immediately for each factor. In this study, numerical analysis is carried out for seepage and slope stability analysis using the typical cross section for reservoir dams. The stress-porewater coupling finite difference numerical analysis is performed for establishing the limit displacement for reservoir dam structures. It is developed a system that can estimate the time to reach the critical value by regression analysis using the measured datas.

One-Dimensional Heat Transfer Model to Predict Temperature Distribution in Voided slabs subjected to fire (화재 시 중공슬래브의 온도분포 예측을 위한 1방향 열전달 모델)

  • Chung, Joo-Hong;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • In general, a reinforced concrete slabs are known to have a high fire resistance performance due to thermal properties of concrete materials. However, according to previous research, the thermal behavior of voided slabs is reported to be different from that of conventional RC solid slabs, and the differences seem to be caused by the air layer formed inside the voided slab. Therefore, it is difficult to estimate the temperature distribution of the voided slab under fire by using the existing methods that do not take into account the air layer inside the voided slab. In this study, a numerical analysis model was proposed to estimate the temperature distribution of voided slabs under fire, and evaluated. Heat transfer of slabs under fire is generally caused by conduction, convection and radiation, and time-dependent temperature changes of slab can be determined considering these phenomena. This study proposed a numerical method to estimate the temperature distribution of voided slabs under fire based on a finite difference method in which a cross-section of the slab is divided into a number of layers. This method is also developed to allow consideration of heat transfer through convection and radiation in air layer inside of slabs. In addition, the proposed model was also validated by comparison with the experimental results, and the results showed that the proposed model appropriately predicts the temperature distribution of voided slabs under fire.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.

The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis (지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석)

  • Lee, Sangyun;Song, Ki-il;Ryu, Heehwan;Kang, Kyungnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.29-36
    • /
    • 2022
  • The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.

The Effect of Pile Distallation on the Reduction of Cumulative Plastic Settlement (말뚝 설치를 통한 콘크리트궤도의 누적소성침하 감소 효과)

  • Lee, Su-Hyung;Lee, Il-Wha;Lee, Sung-Jin;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.129-137
    • /
    • 2008
  • An active application of concrete track is being expected far the future constructions of Korean railroad. In comparison with the existing ballasted tract, a concrete track is very susceptible for the settlement, since its rehabilitation requires much time and cost. When a concrete track is constructed on fine-grained subgrade soil, excessive cumulative plastic settlements due to repetitive train road may occur. In this case, the settlement of the concrete track may be effectively reduced by installing a small number of small-diameter piles beneath the track. This paper presents the effect of pile installation on the reduction of cumulative plastic settlement of concrete track. A method combining experiential equation and numerical method is proposed. Using an existing experiential equation and the estimated earth pressure distribution, the cumulative plastic strain was calculated. From the results, it is verified that the effects of the pile installation is significant to effectively reduce the cumulative plastic settlement of concrete track. The reduction effects of the cumulative plastic settlement according to the pile number and pile arrangement are presented.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

A Review of the Korean Nursing Research Literature with MBTI Personality and Nursing Students (국내 간호학생 성격관련 연구 문헌고찰 : MBTI를 중심으로)

  • Hong, Eun-Young
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.425-436
    • /
    • 2022
  • The purpose of this study was to explore the trends of research on MBTI (Myers-Briggs Type Indicator) and nursing students, and to suggest directions for nursing education geared to the needs of the future. The literature was searched using the National Assembly Library, Korean Studies Information Service System, DBPIA, Korean Medical database and National Discovery for Science Library to identify studies including MBTI personalty among nursing students. This study selected a total of 22 precedent studies regarding the investigation of MBTI personalty and nursing students. All studies were quantitative study and 63.6% of them were nonexperimental cross-sectional study. The most frequently selected category of variables was cognitive-perceptual related variables includes self-efficacy, self-eseem, academic self efficacy and etc. The most frequent MBTI personality type of nursing students was ISTJ (12.3%) and ESTJ (11.5%) was the second. Based on the findings of this study, longitudinal reasearch is recommanded on MBTI personality type and nursing specialty choice. Implications for teaching and learning strategies, and for using the results of MBTI in nursing students' career guidence are discussed.

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.