• 제목/요약/키워드: 차량동역학 해석

검색결과 147건 처리시간 0.024초

차륜-레일 2점 접촉을 고려한 3차원 윤축 동역학 해석 (A Three Dimensional Wheelset Dynamic Analysis considering Wheel-rail Two Point Contact)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 윤축 동역학 해석은 철도차량 동역학 해석의 정밀도를 결정하는 핵심 요소이다. 본 연구에서는 정밀한 3차원 차륜-레일 접촉 해석을 윤축의 강체 운동 방정식에 적용하는 방법으로 3차원 윤축 동역학 해석을 수행하였다. 곡선 주행시 플랜지 접촉에 의해 차륜-레일 2점 접촉이 발생할 때 윤축의 동역학 해석이 가능한 수치해석 절차를 개발하였다. 윤축의 구속조건식과 강체 동역학 방정식을 Runge-Kutta 방법을 이용하여 수치적분을 수행하였다. 제안된 윤축 동역학 해석 결과는 VI-RAIL을 이용한 해석결과와 비교 분석하여 타당성을 검증하였다.

실험기반 차량모델을 이용한 실시간 차량동역학 해석 (Real-Time Dynamic Analysis of Vehicle with Experimental Vehicle Model)

  • 유완석;나상도;김광석
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.1003-1008
    • /
    • 2012
  • 실시간 차량동역학 해석을 위해서는 효율적인 차량 모델이 필요하게 된다. 효율성을 높이기 위해 집중질량모델로 가정하면 현가장치의 특성을 고려하기 어렵게 되며, 현가장치의 특성을 모두 고려한 다물체동역학 모델에서는 효율성이 떨어진다. 그러므로 본 논문에서는 다물체동역학 모델링을 사용하되 해석의 효율성을 저하시키는 현가장치의 각종 요소들의 효과는 기구정역학 실험으로 추출된 특성그래프로 대체함으로써 효율성도 기하고자 시도하였다. $6{\times}6$ 차량을 차체와 휠로 구성된 차량으로 모델을 정의하였고, 다물체동역학 모델인 ADAMS 결과와 비교하여 실험적 모델의 유용성을 검증하였다. 그리고 검증된 실험적 차량모델을 RT-LAB을 활용한 실시간 시뮬레이션 환경에 삽입하여, 실시간성 시뮬레이션의 가능성을 검증하였다.

다물체 동역학 해석방법을 이용한 철도차량의 임계속도 계산 (Calculation of Critical Speed of Railway Vehicle by Multibody Dynamics Analysis)

  • 강주석
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1371-1377
    • /
    • 2013
  • 본 연구에서는 다물체 동역학 모델을 이용한 철도차량의 임계속도 계산 방법을 제시하였다. 휠과 레일의 접촉 구속조건과 접촉력을 휠셋 단위에서 수식화하였다. 이를 대차모델에 합하여 구속조건을 가진 다물체 동역학 운동방정식으로 철도차량의 동적모델을 표현하였다. 철도차량의 다물체 동역학 모델에 대한 비선형 구속조건식과 운동방정식은 QR 분해법을 이용하여 독립좌표만으로 이루어진 선형방정식으로 유도하였다. 유도된 선형방정식으로부터 휠셋 및 이륜 대차에 대한 고유치 해석결과를 통해 임계속도를 구하였다. 임계속도에 영향을 미치는 차량 파라미터의 영향에 대한 결과를 제시하였다.

휠-레일 접촉모듈을 포함한 동역학 해석 프로그램 개발 (Development of a Dynamic Simulation Program Including a Wheel-Rail Contact Module)

  • 조재익;박태원;윤지원;이수호;정성필
    • 한국철도학회논문집
    • /
    • 제13권1호
    • /
    • pp.16-22
    • /
    • 2010
  • 다양한 철도차량 동역학 해석 프로그램들은 장단점을 가지고 있다. 이러한 프로그램들은 가선계를 표현할 수 있는 대변형체를 나타낼 수 없는 한계를 가지고 있다. 본 연구에서는 철도차량의 동역학 해석을 할 수 있는 프로그램을 개발하였다. 이 프로그램은 강체, 유연체, 대변형체에 대한 해석을 수행하고 상용프로그램과의 비교를 통하여 신뢰성을 확보하였다. 또한 가선계를 대변형체로 고려하였고, 강체와 대변형체를 연결하는 미끄럼 조인트를 추가하였다. 여기에 휠-레일 접촉모듈을 추가하여 철도차량의 동역학 해석이 가능한 프로그램을 개발하였다.

곡선 구간에서 철도 차량 휠의 마모 특성 해석 (A Wheel Wear Analysis of Railway Vehicle on a Curved Section)

  • 강주석
    • 대한기계학회논문집A
    • /
    • 제40권6호
    • /
    • pp.547-555
    • /
    • 2016
  • 철도차량의 휠의 마모는 주로 곡선 주행 시 발생한다. 휠의 형상 변화는 차량 동적 안정성에 중요한 영향을 미친다. 본 연구에서는 곡선 주행 시 휠 마모 특성 분석을 위해 곡선 반경 크기와 속도를 변경시키면서 휠 마모량을 계산하였다. 다물체 동역학 해석에 기초한 차량 동역학 해석결과로부터 마모인자를 계산하고 BRR(British Rail Research)에서 제시한 마모 모델을 이용하여 휠의 마모량을 계산하였다. 반경 300m에서의 마모량이 다른 반경과 비교하여 매우 큰 것으로 나타났다. 곡선 선로에 윤활유를 도유하는 경우 마모 특성 변화를 분석하기 위해 휠의 답면과 플랜지 부위의 마찰계수를 다르게 하여 휠 마모량을 계산하였다. 도유 시 휠 마모의 개선 효과를 여러 반경에서 계산하고 실제 도시철도구간에서 마모 개선 효과를 확인하였다.

180km/h급 한국형 틸팅차량의 틸팅 메카니즘 기구동역학 해석 (Kinematics Analysis of Tilting Mechanism for Korea Tilting Train with 180km/h Service Speed)

  • 고태환;김남포;구동회
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.8-14
    • /
    • 2003
  • 곡선부가 많은 국내 기존선의 속도향상을 위한 틸팅차량의 개발은 기존선의 전철화에 따른 고속화를 위해 그 필요성이 부각되고 있다. 일반 고속차량과 다른 주행 메카니즘을 가지고 있는 틸팅차량의 주요 기술을 확보하기 위한 틸팅대차와 틸팅시스템의 개발과 연구는 한국철도의 기술력 향상에 큰 역할을 할 것이다. 180km/h급 한국형 틸팅차량의 틸팅 메카니즘 기구동역학 해석을 통하여 틸팅 대차를 형성하는 주요 파라메터들의 변화에 따른 틸팅 메카니즘의 특성과 영향력을 검토한다. 이를 통하여 최적의 틸팅운동을 수행할 수 있는 주요 파라메터의 값을 제시함으로서 틸팅차량이 요구하는 최적의 틸팅 메카니즘을 구현하고자 한다. 이 연구를 통해서 얻어지는 결과들은 팅팅 대차용 엑츄에이터의 성능 설계와 해석의 기반 자료로 사용되어진다.

  • PDF

현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증 (Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension)

  • 김상섭;정홍규
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발 (Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension)

  • 정홍규;김상섭
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델 (Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7)

  • 손정현;유완석;김두현
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF