• Title/Summary/Keyword: 차동신호

Search Result 180, Processing Time 0.025 seconds

Low Power Dual-Level LVDS Technique using Current Source Switching (전류원 스위칭에 의한 저전력 듀얼레벨 차동신호 전송(DLVDS) 기법)

  • Kim, Ki-Sun;Kim, Doo-Hwan;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.59-67
    • /
    • 2007
  • This paper presents a low power dual-level low voltage differential signaling (DLVDS) technique using current source switching for LCD driver ICs in portable products. The transmitter makes dual level signal that has two different level signal 400mVpp and 250mVpp while keeping the advantages of LVDS. The decoding circuit recovers the primary signal from DLVDS. The low power DLVDS is implemented using a $0.25{\mu}m$ CMOS process under 2.5V supply. The proposed circuit shows 800Mbps/2-line data rate and 9mW, 11.5mW power consumptions in transmitter and receiver, respectively. The proposed DLVDS scheme reduce power consumption dramatically compare with conventional one.

Automatic Alignment of a Differential Detector to the Optical Signal in a Wireless Optical Interconnection (무선광연결에서 신호광에 자동 정렬하는 차동검출기)

  • 이성호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.822-829
    • /
    • 2000
  • In this paper, we introduce a differential detector that automatically aligns itself to the signal beam in order to prevent the voltage variation that may result from minute misalignment of the light source. In this system, a photodiode-array recognizes the central point of the signal beam, and drives motors that correspond to the x and y axes. The photodiode-array aligns itself to the central point of the signal beam, and eliminates the optical noise effect with differential detectioin method. It is very useful in wireless optical interconnections.

  • PDF

A CMOS LC VCO with Differential Second Harmonic Output (차동 이차 고조파 출력을 갖는 CMOS LC 전압조정발진기)

  • Kim, Hyun;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.60-68
    • /
    • 2007
  • A technique is presented to extract differential second harmonic output from common source nodes of a cross-coupled P-& N-FET oscillator. Provided the impedances at the common source nodes are optimized and the fundamental swing at the VCO core stays in a proper mode, it is found that the amplitude and phase errors can be kept within $0{\sim}1.6dB$ and $+2.2^{\circ}{\sim}-5.6^{\circ}$, respectively, over all process/temperature/voltage corners. Moreover, an impedance-tuning circuit is proposed to compensate any unexpectedly high errors on the differential signal output. A Prototype 5-GHz VCO with a 2.5-Hz LC resonator is implemented in $0.18-{\mu}m$ CMOS. The error signal between the differential outputs has been measured to be as low as -70 dBm with the aid of the tuning circuit. It implies the push-push outputs are satisfactorily differential with the amplitude and phase errors well less than 0.34 dB and $1^{\circ}$, respectively.

Polarity discrimination of stator windings for 3 phase induction motors by using DC differential signals between mutual inductive voltages (유도기전력의 차동신호를 이용한 3상유도전동기 고정자 권선의 극성판별)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1141-1145
    • /
    • 2014
  • When the stator windings of 3 phase induction motors are in wrong condition, the mutual inductive responses between windings can be utilized for the purpose of diagnosing motors in that fault windings affect even the responses by DC excitation. Three phase induction motors are supposed to generate consistent inductive voltages at the remaining windings when exciting DC current is given to one of 3 windings, while the inconsistence of their voltages indicates the existence of disorder at electric motors. This study describes how the exciting current to one of three windings cause the other windings to create induced voltages, analyzing responses by transfer functions, and discloses whether or not the balance relation at two windings is normal in the way of measuring the differential voltage of their outputs. For experiment, common analog multi-testers is used for applying exciting current and measuring the output signal to confirm whether the proposed method is useful enough to be able to discriminate wrong polarities of windings onboard vessels including also the case of exciting current by AC.

Design Optimization of Differential FPCB Transmission Line for Flat Panel Display Applications (평판디스플레이 응용을 위한 차동 FPCB 전송선 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho;Lee, Hyung-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.879-886
    • /
    • 2008
  • This paper addresses the analysis and the design optimization of differential interconnects for Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and trace space in differential flexible printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, time-domain transient simulations, and S-parameter simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects. The 10% change in trace width produced change of approximately 6% and 5.6% in differential impedance for trace thickness of $17.5{\mu}m$ and $35{\mu}m$, respectively. The change in the trace space showed a little change. We believe that the proposed approach is very helpful to optimize high-speed differential FPCB interconnects for LVDS applications.

Analysis and Design Optimization of Interconnects for High-Speed LVDS Applications (고속 LVDS 응용을 위한 전송 접속 경로의 분석 및 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.761-764
    • /
    • 2007
  • This paper addresses the analysis and the design optimization of differential interconnects for Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and πace space in differential flexible printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, time-domain transient simulations, and S-parameter simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects.

  • PDF

Differential 2.4-GHz CMOS Power Amplifier Using an Asymmetric Differential Inductor to Improve Linearity (비대칭 차동 인덕터를 이용한 2.4-GHz 선형 CMOS 전력 증폭기)

  • Jang, Seongjin;Lee, Changhyun;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.726-732
    • /
    • 2019
  • In this study, we proposed an asymmetric differential inductor to improve the linearity of differential power amplifiers. Considering the phase error between differential signals of the differential amplifier, the location of the center tap of the differential inductor was modified to minimize the error. As a result, the center tap was positioned asymmetrically inside the differential inductor. With the asymmetric differential inductor, the AM-to-AM and AM-to-PM distortions of the amplifier were suppressed. To confirm the feasibility of the inductor, we designed a 2.4 GHz differential CMOS PA for IEEE 802.11n WLAN applications with a 64-quadrature amplitude modulation (QAM), 9.6 dB peak-to-average power ratio (PAPR), and a bandwidth of 20 MHz. The designed power amplifier was fabricated using the 180-nm RF CMOS process. The measured maximum linear output power was 17 dBm, whereas EVM was 5%.

Signal to Noise Improvement in Optical Wireless Interconnection Using A Differential Detector (차동검출기를 이용한 무선광연결에서 신호대잡음비의 개선)

  • 이성호;강희창
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.54-62
    • /
    • 1999
  • In this paper, we investigated the signal-to-noise ratio improvement in a differential detector, which is a function of the optical noise coupling ratio and the differential gain ratio. A differential detector consists of two photodiodes and a differential amplifier. The differential detector reduced the noise component and improved the signal-to-noise ratio by about 20 dB when the differential gain ratio equals to the optical noise coupling ratio. The differential detector is very effective in removing the environmental optical noise or interference from an adjacent optical channel. This method is also effective when the noise wavelength is similar to the signal.

  • PDF

Electrical Budgets Measurements in PCI Express System (PCI Express 시스템의 전기 파라미터 측정)

  • Gwon, Won-Ok;Kim, Seong-Un
    • Electronics and Telecommunications Trends
    • /
    • v.22 no.4 s.106
    • /
    • pp.133-143
    • /
    • 2007
  • PCI Express는 고속 차동신호를 사용한 점대점(point-to-point) 프로토콜로 신호무결성(signal-integrity) 측정을 위해 기존의 병렬버스신호와 다른 파라미터(parameter)들이 사용되고 있다. PCI Express 시스템에서 중요한 전기 파라미터는 loss와 jitter이며 eye diagram을 통해서 분석이 가능하다. 본 고는 PCI Express 송수신 버퍼의 전기 규격과 애드인카드(add-in card) 시스템의 전기적 여유(budgets)의 의미와 분석을 다룬다. 또한 실제적인 PCI Express 시스템에서 전기 파라미터들을 측정하고 분석, 디버깅의 방법을 다룬다.