• Title/Summary/Keyword: 차동변압기

Search Result 44, Processing Time 0.019 seconds

A Modified Current Differential Relay for Transformer Protection (변압기 보호용 수정 전류차동 계전방식)

  • 강용철;김은수;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

A Difference-Blocked Current Differential Relaying Algorithm for Power Transformers (차전류 차분 방지 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Kim, D.S.;Kim, E.S.;Won, S.H.;Lee, B.E.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.16-18
    • /
    • 2002
  • This paper proposes a difference-blocked current differential relaying algorithm for power transformers. The proposed algorithm observes that the shape of the differential current is changed using the difference. If the change is detected, output of current differential relay is blocked for a certain time. In this way, the algorithm distinguishes internal faults from magnetizing inrush. The proposed algorithm uses only currents and is unaffected by the remanent flux.

  • PDF

A Digital Current Differential Transformer Protecion Algorithm Minimizing the Effect of DC-offset (DC-offset 영향을 최소화한 변압기보호 디지털 비율차동 계전알고리즘 구현)

  • Kwon, Young-Jin;Kang, Sang-Hee;Lee, Seeng-Jae;Jung, Sung-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.38-41
    • /
    • 2001
  • This paper presents a digital current differential protection algorithm for a transformer in power system. This algorithm uses an FIR filter to improve the performance of the relay. This paper presents a practical method setting the operating slope of the relay and reduce ct mismatch. A series of EMTP simulation results have shown effectiveness of the algorithm under various type of transformers and conditions.

  • PDF

A real -time digital protection for transformer using percentage differential characteristic (비율차동특성을 이용한 변압기의 실시간 디지탈보호)

  • Suh, Hee-Seok;Shin, Myong-Chul;Yoon, Man-Chul;Kim, Il-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.63-66
    • /
    • 1992
  • This paper presents the real time digital differential protection scheme for transformer. Inrush and Internal fault conditions are distinguished by the relative magnitudes of fundamental and second harmonic components which are extracted from differential currents. The algorithm is simulated and implemented using a prototype relay which is made up of Intel 80286 CPU and Motorola DSP-56001. The testing data of inrush and Internal fault signals which are sampled at a rate of 12 times a cycle are obtained by EMTP, and tested In real time using simulator which downloaded those data.

  • PDF

Development of Vehicle Clutch Discs Cushion Variation Measurement Device Using a Variable Load Electric Press (하중 가변형 전동 프레스를 이용한 차량용 클러치 디스크 쿠션 변위량 측정 장치 개발)

  • Park, Seung-Gyu;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.64-69
    • /
    • 2016
  • Vehicle clutch measurement for disc cushion variation was developed for the production of high quality Dual clutch transmissions. The developed device is composed of load cells for load measurement and LVDT for measuring the distance variation measurement in cushion variation. The servo motor-driven electric press for flexible loads that was developed was controlled by a PC-based HMI system, LabVIEW, and the device was able to continuously record real time measurement data with the accuracies of ${\pm}0.1\;kgf$ load and ${\pm}5{\mu}m$ cushion amount, which is far above the requirements of commercial vehicle standards.

A Current Differential Relaying Algorithm for Power Transformers Using the Difference of a Differential Current (차전류의 차분을 이용한 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Kim, D.S.;Lee, B.E.;Kim, E.S.;Won, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.274-276
    • /
    • 2002
  • This paper proposes a current differential relaying algorithm for power transformers using the third difference function of a differential current. The algorithm observes the instants when the wave-shape of the differential current is changed due to the change of the magnetization inductance. If the value of the third difference is bigger than the threshold, the output of a current differential relay is blocked for a cycle. In the cases of magnetic inrush and overexcitation, the blocking signal is maintained: however, for internal faults, reset in a cycle. The test results clearly show that the algorithm successfully distinguishes internal faults from magnetizing inrush.

  • PDF

A Current Differential Relaying Algorithm for Three-Phase Transformer Considering the Nonlinear Magnetization Characteristics of the Core (비선형 자화특성을 고려한 3상 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Jin, E.S.;Won, S.H.;Lim, U.J.;Kang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.320-322
    • /
    • 2003
  • This paper describes a current differential relaying algorithm for a three-phase transformer considering the nonlinear magnetization characteristics of the core. The iron-loss current is obtained from the calculated induced voltage and the core-loss resistance. The magnetizing current is calculated from the estimated core flux and the magnetization curve. The proposed algorithm uses the modified differential current, which is obtained by subtracting the iron-loss current and the magnetizing current from the conventional differential current. The various test results show that the algorithm can discriminate internal fault from magnetic inrush, overexcitation and an external fault.

  • PDF

A Current Differential Relaying Algorithm for Power Transformers Using an Advanced Compensation Algorithm of CTs (잔류자속에 무관한 전류보상 알고리즘을 적용한 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Lim, U.J.;Yun, J.S.;Jin, E.S.;Won, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.314-316
    • /
    • 2003
  • To prevent maloperation during magnetic inrush and over-excitation, a current differential relay for power transformers uses harmonic current based restraining or blocking scheme; it also uses dual slope characteristics to prevent maloperation for an external fault with CT saturation. This paper proposes a current differential relaying algorithm for power transformers with an advanced compensation algorithm for the secondary current of CTs. The comparative study was conducted with and without the compensating algorithm. The algorithm can reduce the operating time of the relay in the case of an internal fault and improve security for external faults.

  • PDF

Setting Method of a Percentage Current Differential Relay for Transformer Protection (변압기 보호용 전류비율차동 계전기의 동작영역 설정방법)

  • Kim, Su-Hwan;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • A percentage current differential relay is widely used for transformer protection. Because many percentage current differential relays recently use modified methods instead of conventional methods for deciding the operating characteristics of the large current region, in this paper, the operating region of a percentage current differential relay is analyzed in input-output current domain instead of operating-restraint current domain. An effective method to set the operating region when a CT is saturated is proposed with a series of investigations comparing a conventional method with the proposed modified method. The performance of the proposed method is evaluated for internal and external faults of a power transformer having the voltage rating of 345/154kV. EMTP-RV is used for the relaying data collection.

A Current Differential Relay for Transformer Protection with a Blocking Method Using the Difference-Function of a Differential Current (차전류 차분 블로킹 변압기 보호용 전류차동 계전기)

  • 강용철;원성호;김대성;양성채
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.691-697
    • /
    • 2003
  • This paper proposes a current differential relay for transformer protection that operates in accordance with a blocking method based on the difference-function of a differential current. For magnetic inrush and over-excitation, discontinuities in the first-difference function of the differential current arise at the points of inflection, which correspond to the start and end of each saturation period of the core. These discontinuities are converted into the pulses in the second- and third-difference functions of the differential current. The magnitudes of the pulses are large enough to detect saturation of the core. A blocking signal is issued if the magnitude of the third-difference function exceeds the threshold and is maintained for three quarters of a cycle. The performance of the relay is assessed under various conditions with magnetic inrush, internal faults and external faults. The proposed blocking method can improve significantly the operating time of a relay and achieve high sensitivity of a relay.