• Title/Summary/Keyword: 질소 인 제거

Search Result 372, Processing Time 0.023 seconds

The Effect of Fixed Media and Recycling Ratio on Nutrients Removal in a Pilot-Scale Wastewater Treatment Unit (고정식 담체 유무와 반송비에 따른 소규모 하수처리 시스템 내 영양염류 제거 특성)

  • Hwang, Jae-Hoon;Cho, Dong-Wan;Kim, Chung-Hwan;Jeon, Byong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.449-455
    • /
    • 2013
  • The effect of recycling ratio and fixed media on nitrate and phosphate removal was investigated in a pilot-scale wastewater treatment unit using synthetic wastewater. Addition of fixed media increased nitrate removal from 45 to 58% while no noticeable change was observed for Chemical Oxygen Demand (COD) and phosphate removal (<5%). Nitrate removal efficiency also enhanced (Ca 7%) when the influent wastewater flow was doubled (2Q), however phosphate removal was decreased from 40.9 to 26.6% with the increasing recycling rate. The attached biomass analysis showed the presence of bacteria (73.4 $mg/cm^2$) on the surface of added media in anoxic reactor. Pseudomonas aeruginosa a common denitrifying bacterium dominated the bacterial growth (58%) in the anoxic reactor which was determined using Fluorescence In Situ Hybridization (FISH) analysis.

A Study on the Reduction of COD, Total Phosphorus and Nitrogen in Wastewater by Electrolysis and HClO Treatment (전기화학처리와 HClO 처리를 통한 폐수중 COD, 총인, 총질소의 저감에 대한 연구)

  • Kim, Tae Kyeong;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • This study was conducted to develop a wastewater treatment system to remove organic matter, nitrate nitrogen, and phosphate ion in synthetic wastewater. COD was removed almost 100% by the oxidation reaction of HClO and nitrate nitrogen was reduced to ammonia by electrolysis treatment, but ammonia was reoxidized into nitrate nitrogen by HClO treatment. Ammonia was removed almost 100% by heating evaporation and no ammonia was reoxidized into nitrate by HClO treatment. Phosphate ion could be removed by precipitation treatment by forming metal complex according to pH. Through electrolysis treatment and HClO treatment, removal efficiencies of COD 99.5%, nitrogen 97.3% and phosphorus 91.5% were obtained.

Process Development of Algae Culture for Livestock Wastewater Treatment Using Fiber-Optic Photobioreactor (축산폐수 처리를 위한 광섬유 생물반응기를 이용한 조류 배양 공정 개발)

  • 최정우;김영기;류재홍;이우창;이원홍;한징택
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • In this study, algae cultivation using the photobioreactor has been applied to remove the nitrogen and phosphorus compounds in the wastewater of the livestock industry. The optimal ratio of nitrate and ortho-phosphate concentration was found for the enhancement of removal efficiency. To achieve the high density culture of algae, the photobioreactor consisted of optical fibers wes developed to get the sufficient light intensity. The light could be illuminated uniformly from light source to the entire reactor by the optical fibers. The structured kinetic model was proposed to describe the growth rate, consumption rate of nitrates and ortho-phosphates in algae culture. The self-organizing fuzzy logic controller incorporated with genetic algorithm was constructed to control the semi-continuous wastewater treatment system. The proposed fuzzy logic controller was applied to maintain the nitrated concentration at the given set-point with the control of wastewater feeding rate. The experimental results showed that the self-organizing fuzzy logic controller could keep the nitrate concentration and enhance algae growth.

  • PDF

Biological Phosphorus and Nitrogen Removal in Anaerobic-Aerobic Activated Sludge Process (활성오니를 이용한 인 및 질소의 생물학적 제거)

  • CHOI Seung-Tae;PARK Mi-Yeon;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.690-695
    • /
    • 1994
  • Simultaneous removal of phosphorus and nitrogen from wastewater was studied by the anaerobic-aerobic system of activated sludge. In the anaerobic stage, most of the influent glucose was removed and orthophosphate was released, when the nitrate and/or nitrite concentration in the wastewater was almost zero. The amount of the released phosphorus was found to be directly proportional to the amount of the removed glucose. When the ratio of phosphorus to glucose in the influent was less than 0.04, the phosphorus in the wastewater was almost completely removed during the aerobic state. Under the anaerobic condition, activated sludge released phosphate and excess removal of phosphate occurred during the aerobic condition. Namely, the stress received in anaerobic period stimulated the uptake of phosphorus in aerobic period. The amounts of phosphorus release in the anaerobic and uptake in the aerobic stage were less in proportional to the concentration of $NO_x-N$. Further, if the initial ratio of $NO_2-N$/glucose was less than 0.37, the inorganic nitrogen in the influent could be completely removed.

  • PDF

Nitrogen and Phosphorus Removal Characteristics of a New Biological Nutrient Removal Process with Pre-Denitrification by Pilot Scale and Computer Simulation Program (선단무산소조를 이용한 영양소제거공정(Bio-NET)의 질소·인 제거 특성)

  • Oh, Young-Khee;Oh, Sung-Min;Hwang, Yenug-Sang;Lee, Kung-Soo;Park, No-Yeon;Ko, Kwang-Baik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.121-132
    • /
    • 2000
  • This study is to investigate the performance of a new BNR process using predenitrification scheme focusing on nitrogen removal and the possibility of adapting a computer simulation scheme in BNR process development. By using a pre-denitrification basin, higher $COD/NO_3-N$ ratio could be sustained in this BNR process. The results of the investigation showed a SDNR value of 9.04mg/gMv/hr. In the anoxic tank, the average value of SPRR of 6.25mgP/gMv/hr was observed to be very sensitive to SCOD load of influents. By calibrating internal parameters (stoichiometric and kinetic parameters) of the simulation model, the results of simulation for various BNR processes gave good agreement with observed data. The major adjustment was given with three parameters, maximum specific growth rate of heterotrophic biomass, short chain fatty acid (SCFA) limit, and phosphorous release rate. With the series of simulations on varying operational conditions, the simulation by computer program can be a useful tool for process selection, and design and operation of municipal wastewater treatment plant.

  • PDF

The Development of Treatment System for Removing the Low Concentrated Nitrogen and Phosphorus Using Phototrophic Bacteria and Media (광합성 박테리아 및 담체를 이용한 하천의 저농도 질소, 인 처리 시스템 개발)

  • Kim, Sun-Jung;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • We used phototrophic bacteria to remove low concentrated organic materials (CODCr), nitrogen and phosphorus. We applied $COD_{Cr}$ 37.3 mg/L, $NH_3-N$ 4.0 mg/L, and $PO_4^{3-}-P$ 1.0 mg/L (C:N:P=100:10:1) in the batch test, and the removal efficiencies were shown as follow: $COD_{Cr}$ 87.4%, $NH_3-N$ 46.3%, $PO_4^{3-}-P$ 79.7%. The aerobic process with mixed phototrophic bacteria, ceramic media, and media KSP01 showed the removal efficiencies of $COD_{Cr}$, $NH_3-N$, and $PO_4^{3-}-P$, each as 72.7% and 79.2%, respectively in the lab-scale reactor. The maximum $PO_4^{3-}-P$ removal efficiency reached 92.6% by adjusting pH. There were three conditions used to remove $NH_3-N$. The highest removal efficiency was 98.5% with 10.2 L/min of aeration in 1-2 reactors, and the result of applying river-water showed the high removal efficiency of $NH_3-N$ (82.8%). Therefore, this purification system may be useful to control nitrogen and phosphorus at low concentration in field.

A Study on Wastewater Treatment by Electrochemical Treatment with Various Electrode Interval (전극 간격에 따른 전기화학적 처리를 통한 폐수처리에 관한 연구)

  • Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.417-423
    • /
    • 2019
  • A new wastewater treatment system was developed to remove nitrate nitrogen and phosphorus in synthetic wastewater through electrochemical treatment. Higher removal efficiencies of nitrate nitrogen were obtained as the current density increased. Higher nitrate removal efficiencies were obtained when the switching interval was 1 min. The total phosphorus removal rate according to the current density was found to be over 90% without being greatly affected by the change in current density and interval, and the total removal rate increased with increasing switching time (1 min interval). On the other hand, COD was not treated by electrochemical treatment, but rather increased as the electrode eluted. Also, the consumption rate of the electrode was smaller as the switching interval was shorter. Finally, removal efficiencies of 98.1% of nitrate and 90% of phosphorus were obtained through electrochemical treatment (current density $50mA/cm^2$, switching interval 1 min, flow rate 540 mL/min).

Removal of High-Concentration Contaminants Causing of Green Algae in System of Sheet Flow (박층류 모형에서의 고농도 녹조 원인물질 제거)

  • Kim, Myounghwan;Lee, Du Han;Eom, Jung Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.418-418
    • /
    • 2019
  • 낮은 수심, 저 유속의 수로 자갈층에 형성된 생물막을 이용하여 오염물질을 제거하는 박층류 자연정화기법의 효율적인 설계와 운영지침을 얻기 위하여 경기도 용인시 오산천 일부 구간에 현장적용을 위한 Test-bed를 조성하여 박층류 자연정화수로에서의 오염물질 제거 효율을 조사하였다. 오염물질은 녹조발생의 주요 원인물질인 인과 질소를 대상으로 하였고, 연구 조건은 일반적인 하천수에서의 오염 조건과 비점오염원으로부터 오염물질이 유입된 오염조건의 두 가지 조건을 가정하여 제거효율을 분석하였다. 분석 결과 모든 조건에서 박층류 수로를 통과할 때 오염물질의 농도가 감소함을 확인할 수 있었다. 특히 T-P 3 mg/L 이상, T-N 20 mg/L 이상의 고농도의 오염물질 유입시에 박층류 자연정화수로는 평상시보다 높은 60% 이상의 높은 제거 효율을 보였는데, 이를 통하여 박층류 자연정화기법이 고농도의 오염물질 제거에서도 제한적이지 않고 오히려 더 효과적임을 알 수 있었다.

  • PDF

Evaluation of Physical Property on EM Media for Water Treatment (수처리용 EM 담체의 물리적 특성 평가)

  • Bae, Su-Hyun;Ra, Deog-Gwan
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.493-502
    • /
    • 2018
  • The purpose of this study was to develop EM media for water treatment and to remove nitrogen and phosphorus which cause water algae boom in water system. The ideal mixing ratio of raw material such as clay: zeolite: vermiculite: activated carbon for manufacturing the EM media was 10: 2.5: 0.1: 2, and the calcination temperature was $700^{\circ}C$. The comparison of the physical properties of manufactures using distilled water and EM activated liquid as the material mixture are as follows. Porosity and density of EM media were 39.98 % and $1.13kg/m^3$, adsorption efficiencies of nitrogen and phosphorus were 69.3 % and 38.9 %. In contrast, porosity and density of distilled water media were 37.80 % and $1.11kg/m^3$, and adsorption efficiencies of nitrogen and phosphorus were 62.5 % and 37.8 %. The adsorption rate of nitrogen and phosphorus in the EM media was higher than that of the distilled water made one by 6.8 % and 1.1 %, respectively. The adsorption characteristics of the media to nitrogen and phosphorus could be expressed by the Freudlich adsorption isotherm. The change of calcination time did not affect the adsorption efficiency of phosphorus and nitrogen when EM media was formed, but it was considered that it affects the strength of media. Nitrogen removal efficiency was the best record in 4 hours of calcination time and 3 hours of calcination time in phosphorus removal efficiency.