• Title/Summary/Keyword: 진동 소음저감

Search Result 1,115, Processing Time 0.038 seconds

A Study on the Control System of Permanent Magnet Linear Synchronous Motor Applied to the Z-axis Operation Structure (Z축 운전구조를 갖는 선형 영구자석형 동기 전동기 운전제어에 관한 연구)

  • Choi, Chul;Lee, Jin-Ha;Park, Han-Woong;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • PMLSM(Permanent Magnet linear Synchronous Motor) has widely applied to industrial automations, machine tools and semiconductor equipments due to the merit on the reduction of noise, vibration and the superior dynamic characteristics in comparison to the conventional method, which uses mechanical transfer equipments. Especially, in the case of applying to Z-axis operation structure, control system needs the method of an initial angle setting and the improvement of up/down operation characteristics. This paper proposes an initial angle setting algorithm and a variable gain schedule using real speed and moving direction to improve up/down operation characteristics. The effectiveness of proposed algorithms Is demonstrated by comparing to a conventional gain system via 4-point absolute positions profile with each velocity, acceleration and deceleration.

The Design of High-power BLDC Motor with Maximum Torque at Low Speed for Ship Propulsion (선박 추진 장치를 위한 저속영역에서 최대토크를 가지는 고출력 BLDC 모터의 설계)

  • Cho, Seung-Hyun;Bin, Jae-Gu;Cho, Soo-Eok;Choi, Chul;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.112-118
    • /
    • 2004
  • Recently, development of rare earth permanent magnet with the high remanence, high coercivity allows the design of brushless motors with very high efficiency over a wide speed range. Cogging torque is produced in a permanent magnet by magnetic attraction between the rotor mounted permanent magnet and the stator teeth. It is an undesired effect that contributes to output ripple, vibration, and noise of machine. This cogging torque can be reduced by variation of magnet arc length, airgap length, magnet thickness, shifting the magnetic pole and varying the radial shoe depth and etc. In this paper, some airgap length and magnet arc that reduce cogging torque are found by finite element method(FEM) and Maxwell stress tensor method. The SPM(Surface Permanent Magnet) type of high-power Brushless DC (BLDC) motor is optimized as a sample model.

A Study on Noise Reduction of Rotary Compressor (공조용 로터리 압축기의 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF

Evaluation of the Railroad Track Life Cycle Based on the Metro Rail Wear Data Regression Analysis (지하철 마모 데이터 회귀분석을 통한 궤도 수명 평가)

  • Jeong, Min-Chul;Kim, Jung-Hoon;Lee, Jee-Ha;Kang, Yun-Suk;Kong, Jung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.86-93
    • /
    • 2010
  • The wear of railway track affects loss of rough ride, noise or vibration of train and traveling safety. Moreover as the track is worn away, this promotes destruction of structural mechanism of rail track which can bring about increasing of rail track maintenance cost drastically. For this reason, it is very important and interested research subject to design railway track structure and to analyse train movement mechanism based on systematic analysis of the reasons causing rail wear possible in real field. In this research, for the efficient maintenance, Life Cycle Performance of rail track and maintenance characteristics are computed considering some track components such as track type, contracting type, sleeper type and roadbed type. Time - Wear probabilistic distribution relationship as well as multiple regression analysis based on time, curvature and wear data are computed to predict the service life remainder of railway track and to be adapted to safety assessment.

An Study on Pole Piece Shape for Improving Torque Ripple of Magnetic Gears (마그네틱 기어의 토크리플 개선을 위한 폴피스 형상 연구)

  • Kim, Chan-Seung;Park, Eui-Jong;Kim, Sung-Jin;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1065-1070
    • /
    • 2017
  • Magnetic gears are magnetically coupled to the input side and the output side of the rotary machine to transmit power without mechanical contact. The magnetic gear consists of an inner rotor, an outer rotor and pole pieces. Torque ripple occurs due to the difference in reluctance between the two rotors and the pole pieces during power transmission. Torque ripple is a cause of the noise and vibration of the rotary machine, so it is necessary to minimize it. In this paper, we propose a shape that cuts the corner of the pole piece and apply a fillet to reduce torque ripple. We used a two-dimensional finite element analysis method to compare and analyze the torque ripple of the magnetic gears according to the change of the fillet parameters and to find the pole piece shape with excellent torque ripple.

Development of Position Sensor Detection Circuit using Hall Effect Sensor (Hall Effect Sensor를 이용한 위치센서 검출회로개발)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • BLDC motors are getting better performance due to the improvement of material technology including high performance of permanent magnets, advancement of driving IC technology with high integration and high functionality, and improvement of assembly technology such as high point ratio. While having the advantage of such a square wave driven BLDC motor, interest in the design and development of a square wave driven BLDC permanent magnet motor and development of a position detection circuit and driver is increasing in order to more meet the needs of users. However, in spite of the cost and functional advantages due to reduced efficiency, switching loss and vibration, noise, etc., the application is somewhat limited. Therefore, in this paper, we study a position detection circuit that generates a sinusoidal signal in proportion to the magnetic flux of a BLDC motor rotor using a Hall Effect Sensor that generates a sinusoidal wave to increase the efficiency of the motor, reduce ripple, and drive a sinusoidal current with excellent speed and torque characteristics.

Design of a wind turbine generator with low cogging torque by using evolution strategy (진화론적 알고리즘을 이용한 코깅토크가 적은 풍력발전기의 설계)

  • Park, Ju-Gyeong;Cha, Guee-Soo;Lee, Hee-Joon;Kim, Yong-Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.755-760
    • /
    • 2016
  • The demand for independent generators using renewable energy has been increasing. Among those independent generators, small wind turbine generators have been actively developed. Permanent magnets are generally used for small wind turbine generators to realize a simple structure and small volume. On the other hand, cogging torque is included due to the structure of the permanent magnet synchronous machine, which can be the source of noise and vibration. The cogging torque can be varied by the shape of the permanent magnet and core, and it can be reduced using the appropriate design techniques. This paper proposes a design technique that can reduce the cogging torque by changing the shape of the permanent magnets for SPMSM (Surface Permanent Magnet Synchronous Motor), which is used widely for small wind turbine generators. Evolution Strategy, which is one of non-deterministic optimization techniques, was adopted to find the optimal shape of the permanent magnets that can reduce the cogging torque. The angle and outer diameter of permanent magnet were set as the design variable. A 300W class wind turbine generator, whose pole/slot combination was 8 poles/18 slots, was designed with the proposed design technique. The properties of the generator, including the cogging torque and output voltage, were calculated. The calculation results showed that the cogging torque of the optimized model was reduced compared to that of the initial model. The design technique proposed by this paper can be an effective measure to reduce the cogging torque.

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

A Study on the inclined balcony and double deck structure of Korean traditional housing (한옥의 경사처마와 이중바닥구조에 관한 연구)

  • Roh, Young-Sook;Kim, Jeong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8408-8415
    • /
    • 2015
  • The purpose of this study is to propose and analyse new technology of structural elements design for Korean-style house(Hanok). Design of modern apartment building adopts many aesthetic elements from Hanok, however, these are only for the decorations of interior. In this study, projected Hanok eaves were studied in terms of the length of solar insolation. Inclined front slab system has been proposed utilizing sloping roof to an apartment building section. This system can provide the same sunshine radiation length and outside view to all levels of building to overcome the limitation of traditional hanok. It also can be applied to all residences the vertical garden concept of hanok. Inclined slab system showed 20% more efficient than flat slab system in terms of solar insolation length. This study also suggested a double deck slab system for not only reducing apartment floor impact noise but also connecting concept of traditional maru system in hanok. Double deck system reduces 66% of floor impact noise comparing with single deck slab of modern apartment buildings.

New Gain Function Based on Attenuation Characteristics of Ballast Track for GPR Analysis (GPR 분석을 위한 자갈궤도 자갈의 감쇄특성을 이용한 이득함수 개발)

  • Shin, Jihoon;Choi, Yeongtae;Jang, SeungYup
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2017
  • Ballasted track has been used as track system for more than 100 years. Ballasted track has advantages of low construction cost, flexible maintenance, low noise and vibration, and so on. However, ballasted track leads to continuous settlement which causes maintenance. Recently, increase in speed, traffic volume, and weight of train requires more frequent maintenance. Fouling, well-known phenomenon of accumulation of fine materials due to intrusion of subgrade and breakage of ballast materials, expedites the settlement (i.e., irregular settlement) of track. Ground Penetrating Radar (GPR) can be one of non-destructive tools that can evaluate fouling level of ballast. In this paper, a gain function based on the attenuation characteristics of ballast material is suggested in conjunction with Hilbert transform. Lab box tests and full-scale tests indicate that the suggested method reasonably classifies clean, fouled layers, and subgrade. However, additional study to eliminate effect of sleeper and to include the scattering features of the electromagnetic wave in ballast voids should be required in order to enhance the accuracy.