• Title/Summary/Keyword: 진동수 이동

Search Result 421, Processing Time 0.029 seconds

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 지진거동 평가)

  • Ko, Hyun;Kim, Hyun-Su;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.13-22
    • /
    • 2010
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

Mössbauer Studies of CoGa0.1Fe1.9O4 Nanoparticles (나노분말 CoGa0.1Fe1.9O4의 Mössbauer 분광학적 연구)

  • Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.144-148
    • /
    • 2006
  • $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticles have been prepared by a sol-gel method. The structural and magnetic properties have been investigated by XRD, SEM, VSM and $M\ddot{o}ssbauer$ spectroscopy. $CoGa_{0.1}Fe_{1.9}O_4$ powder that was annealed at $250^{\circ}C$ has spinel structure and behaved superparamagnetically. The estimated size of superparammagnetic $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticle is around 10 nm. The hyperfine fields at 4.2 K f3r the A and B patterns were found to be 518 and 486 kOe, respectively. The blocking temperature $(T_B)$ of superparammagnetic $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticle is about 250 K. The magnetic anisotropy constant of $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticle was calculated to be $3.0X10^5\;ergs/cm^3$. $CoGa_{0.1}Fe_{1.9}O_4$ nanoparticle was annealed at $250^{\circ}C$ will be used to candidate for biomedicine applications as magnetic carriers.

Heavy-weight Impact Sound Characteristics of Floor Structure of a Small-Sized Wall-Slab Apartment Building having Joist Slab (장선슬래브를 갖는 소형평형 벽식구조 아파트 바닥구조의 중량충격음 특성)

  • Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In the present paper, as a way of reducing heavyweight impact sounds, in particular, among floor impact sounds which have come to the forefront as a social issue recently, a floor joist slab is proposed that is expected to bring an effect of reducing heavyweight impact sounds through a shift in the natural frequency by installing a floor joist on a flat-type slab to increase the rigidity of the floor slab, differently from the existing method that increases the thickness of floor slab, and the heavyweight impact sound characteristics depending on the floor joist height and interval are interpretively analyzed. As a result of the analysis, though a trend is shown where the sound pressure level decreases as the slab thickness of floor joist increases, and as no difference is shown when thickness is above a certain value, it is thought that there is a threshold for the effect of an increase in floor thickness on blockage of heavyweight impact sounds. Also, as an increase in floor rigidity resulting from an increase in the floor joist height and a decrease in the interval does not lead to a consistent increase in the performance of blocking heavyweight impact sounds, it is thought that a different floor joist height and interval should be applied to each type of house to expect optimum performance of blocking heavyweight impact sounds, and an increase of 100mm in the floor joist height or a decrease of about 100mm in the interval is expected to bring an effect of reducing heavyweight impact sounds by about 1dB to 2dB.

Dynamic Performance Estimation of the Incrementally PSC Girder Railway Bridge by Modal Tests and Moving Load Analysis (다단계 긴장 PSC 거더 철도교량의 동특성 실험 및 주행열차하중 해석에 의한 동적성능 평가)

  • Kim, Sung Il;Kim, Nam Sik;Lee, Hee Up
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.707-717
    • /
    • 2006
  • As an alternative to conventional prestressed concrete (PSC) girders, various types of PSC girders are either under development or have already been applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to the design concept, these new types of PSC girders have the advantages of requiring less self-weight while having the capability of longer spans. However, the dynamic interaction between bridge superstructures and passing trains is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate modal parameters of newly designed bridges before doing dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied, in order to obtain precise frequency response functions and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage. With the application of reliable properties from modal experiments, estimation of dynamic performances of PSC girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of moving train. Dynamic displacements, impact factor, acceleration of the slab, end rotation of the girder, and other important dynamic performance parameters are checked with various speeds of the train.

Nonlinear Seismic Performance Evaluation of an Operating TBM(Tunnel Boring Machine) Tunnel (공용 중인 TBM(Tunnel Boring Machine) 터널의 비선형 내진성능 평가 )

  • Byoung-Il Choi;Dong-Ha Lee;Jin-Woo Jung;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.1-9
    • /
    • 2024
  • Recently, the TBM tunnel construction method has been in the spotlight as tunnel excavation under urban areas such as the Metropolitan Rapid Transit (GTX) has been actively carried out. Although the construction cost of the TBM tunnel is high, it is relatively free from noise and vibration compared to the NATM tunnel method, so it is well known to be a suitable construction method for application to the lower part of urban areas. In particular, when the stratum passes through the shallow section, it can have a great impact on existing upper structures and obstacles, so accurate numerical analysis considering various variables is required when designing the TBM tunnel. Unlike other tunnel construction methods, TBM tunnels build linings by assembling factory-made segments. Unlike NATM tunnels, segment lining has connections between segments, so how to the connection status between segments is reflected can have a significant impact on securing the reliability of analysis results. Therefore, in this paper, a segment joint model(Janssen Model) was applied to the lining for seismic analysis of the TBM tunnel, and the tunnel's behavioral characteristics were analyzed after numerical analysis using nonlinear models according to urban railway seismic design standards.

Possible Influence of Western North Pacific Monsoon on Tropical Cyclone Activity Around Korea (북서태평양 몬순이 한국 영향태풍활동에 미치는 영향)

  • Choi, Ki-Seon;Park, Ki-Jun;Lee, Kyungmi;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.68-81
    • /
    • 2015
  • In this study, the correlation between the frequency of summer tropical cyclones (TC) affecting areas around Korea over the last 37 years and the western North Pacific monsoon index (WNPMI) was analyzed. A clear positive correlation existed between the two variables, and this high positive correlation remained unchanged even when excluding El Ni$\tilde{n}$o-Southern Oscillation (ENSO) years. To investigate the causes of the positive correlation between these two variables, ENSO years were excluded, after which the 8 years with the highest WNPMI (positive WNPMI phase) and the 8 years with the lowest WNPMI (negative WNPMI phase) were selected, and the average difference between the two phases was analyzed. In the positive WNPMI phase, TCs usually occurred in the eastern waters of the tropical and subtropical western North Pacific, and tended to pass the East China Sea on their way north toward Korea and Japan. In the negative WNPMI phase, TCs usually occurred in the western waters of the tropical and subtropical western North Pacific, and tended to pass the South China Sea on their way west toward the southeastern Chinese coast and the Indochina peninsula. Therefore, TC intensity was higher in the positive WNPMI phase, during which TCs are able to gain sufficient energy from the sea while moving a long distance to areas nearby Korea. TCs also tended to occur more often in the positive WNPMI phase. In the difference between the two phases regarding 850 and 500 hPa streamline, anomalous cyclones were reinforced in the tropical and subtropical western North Pacific, while anomalous anticyclones were reinforced in mid-latitude East Asian areas. Due to these two anomalous pressure systems, anomalous southeasterlies developed in areas near Korea, with these anomalous southeasterlies playing the role of anomalous steering flows making the TCs head toward areas near Korea. Also, due to the anomalous cyclones developed in the tropical and subtropical western North Pacific, more TCs could occur in the positive WNPMI phase.

Possible Effect of Western North Pacific Monsoon on Tropical Cyclone Activity around East China Sea (북서태평양 몬순이 동중국해 주변의 태풍활동에 미치는 영향)

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.194-208
    • /
    • 2017
  • This study analyzed the correlation between tropical cyclone (TC) frequency and the western North Pacific monsoon index (WNPMI), which have both been influential in East China Sea during the summer season over the past 37 years (1977-2013). A high positive correlation was found between these two variables, but it did not change even if El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) years were excluded. To determine the cause of this positive correlation, the highest (positive WNPMI phase) and lowest WNPMIs (negative WNPMI phase) during an eleven-year period were selected to analyze the mean difference between them, excluding ENSO years. In the positive WNPMI phase, TCs were mainly generated in the eastern seas of the tropical and subtropical western North Pacific, passing through the East China Sea and moving northward toward Korea and Japan. In the negative phase, TCs were mainly generated in the western seas of the tropical and subtropical western North Pacific, passing through the South China Sea and moving westward toward China's southern regions. Therefore, TC intensity in the positive phase was stronger due to the acquisition of sufficient energy from the sea while moving a long distance up to East Asia's mid-latitude. Additionally, TCs occurred more in the positive phase. Regarding the difference in 850 hPa and 500 hPa stream flows between the two phases, anomalous cyclones were strengthened in the tropical and subtropical western North Pacific, whereas anomalous anticyclones were strengthened in East Asia's mid-latitude regions. Due to these two anomalous pressure systems, anomalous southeasterlies developed in East China Sea, which played a role in the anomalous steering flows that moved TCs into this region. Furthermore, due to the anomalous cyclones that developed in the tropical and subtropical western North Pacific, more TCs could be generated in the positive phase.

Quantitative Rainfall Estimation for S-band Dual Polarization Radar using Distributed Specific Differential Phase (분포형 비차등위상차를 이용한 S-밴드 이중편파레이더의 정량적 강우 추정)

  • Lee, Keon-Haeng;Lim, Sanghun;Jang, Bong-Joo;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • One of main benefits of a dual polarization radar is improvement of quantitative rainfall estimation. In this paper, performance of two representative rainfall estimation methods for a dual polarization radar, JPOLE and CSU algorithms, have been compared by using data from a MOLIT S-band dual polarization radar. In addition, this paper presents evaluation of specific differential phase ($K_{dp}$) retrieval algorithm proposed by Lim et al. (2013). Current $K_{dp}$ retrieval methods are based on range filtering technique or regression analysis. However, these methods can result in underestimating peak $K_{dp}$ or negative values in convective regions, and fluctuated $K_{dp}$ in low rain rate regions. To resolve these problems, this study applied the $K_{dp}$ distribution method suggested by Lim et al. (2013) and evaluated by adopting new $K_{dp}$ to JPOLE and CSU algorithms. Data were obtained from the Mt. Biseul radar of MOLIT for two rainfall events in 2012. Results of evaluation showed improvement of the peak $K_{dp}$ and did not show fluctuation and negative $K_{dp}$ values. Also, in heavy rain (daily rainfall > 80 mm), accumulated daily rainfall using new $K_{dp}$ was closer to AWS observation data than that using legacy $K_{dp}$, but in light rain(daily rainfall < 80mm), improvement was insignificant, because $K_{dp}$ is used mostly in case of heavy rain rate of quantitative rainfall estimation algorithm.

Development of the Pulse Tube Cryocooler for Infrared Detector (적외선 검출기용 맥동관 극저온 냉동기 기술개발)

  • Yeom, Hankil;Park, Seoung-Je;Hong, Hong-Ju;Ko, Junseok;In, Sehwan;Kim, Hyo-Bong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.241-248
    • /
    • 2015
  • Most of the Stirling cryocoolers used for infrared detector cooling in domestic is imported. Because the cooler has a high price, short life and poor durability, demand for the coolers continues steadily. However, the cooler is highly related to defense and space technology, technology transfer or co-development with the countries having experties in cooler design is very limited. The pulse tube cooler to be developed in this study is such that the mechanical piston in low temperature actuating part is replaced by the gas piston and linear compressor is adopted, which results in low vibration, long life and better durability. It is expected that development of the pulse tube cooler will not only improve our technology to the level of advanced countries, but also enhance the skills in designing and manufacturing of the infrared detector.

A Study on Integraion Method for Improvement of Numerical Stability of Meshfree Method (무요소법의 수치적 안정성 개선을 위한 적분기법 연구)

  • Kang, JaeWon;Kang, Da Hoon;Cho, Jin Yeon;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • In order to generate meshes automatically for finite element analysis of complex structures such as aircraft, a large number of triangular elements are typically created. However, triangular elements are less accurate than rectangular elements, so it is difficult to obtain a reliable solution. This problem can be improved through the meshfree method using the back cell integration. However, this method also causes some problems such as over-use of the integration points and inefficiency of the integral domain. In order to improve these problems, a method of performing integration by setting the integral area based on a node basis has been proposed, but in the case of incompressible material problems, the numerical accuracy deteriorates due to the vibration phenomenon of the solution. Therefore, in this paper, the modified meshfree method is proposed which sets the integral domain as an element domain instead of the nodal domain, and the proposed method improves the numerical instability caused by the conventional meshfree method without decreasing the accuracy regardles of the shape of integral domain. The effectiveness of the modified meshfree method is verified by using 2-D examples.