• Title/Summary/Keyword: 진동내구성

Search Result 179, Processing Time 0.024 seconds

지능형 고속 회전기 요소 및 시스템의 안정화 해석/설계기술

  • 김창호
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.26-28
    • /
    • 2001
  • 최근의 회전 기계 시스템은 단위 중량 당 에너지 효율을 높이기 위하여 고속화 소형화(경량화) 추세이며 이에 따라 불안정성이 증대되는 경향이 있다. 이를 개선하기 위하여는 회전기 요소의 연구가 필수적인데 이는 결국 기계시스템의 내구성 및 안전과 경쟁력 향상에도 직결되는 중요한 사항이 된다. 여기에서는 고속회전기 요소 및 시스템 안정화 해석설계 기술과 관련. 한국과학기술연구원(KIST) 트라이볼로지 연구센터의 로터다이나믹스팀이 현재 보유하고 있거나 개발 중인기술들을 소개함으로써 향후 고속화를 통한 회전기계 시스템의 세계적 경쟁력 향상은 물론 새로운 관심사로 떠오르는 지능형 회전기기 시스템과 초소형 회전기기 시스템에 관련된 연구 개발을 소개하고자 한다.(중략)

  • PDF

자동차 현가장치용 Rubber Bushing 부품의 신뢰성 향상

  • Jeong, Won;Gwon, Yeong-Ho;Yun, Sin-Il;Jo, Hyeon-Jong
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.362-370
    • /
    • 2006
  • 차량의 충격과 진동을 완화하고 링크의 조정역할을 하는 Rubber Bushing제품의 내구성이 약하게 되면 Control arm에서의 이탈사고나 차량의 떨림, 소음으로 인한 고객 불만이 발생하게 된다. 따라서, 국내외 시장에서의 경쟁력 향상을 위해 Rubber Bushing에 대한 내구성, 정특성, 동특성의 개선을 위한 기술의 개발이 요구되고 있다. 본 연구의 목적은 Rubber Bushing을 개발하는데 있어서 종전의 재료설계, 형상설계 및 공정설계에 대한 분석을 행하고, 실험계획법(DOE)을 활용하여 가장 적은 샘플의 시험으로 최적의 설계요소를 찾아내는 방법을 연구하는데 있다. Bushing의 품질특성이 재료, 형상 및 공정에서 어떠한 조건을 가질 때 특성치가 가장 높은 바람직한 반응을 얻을 수 있는 가를 연구하여 최적반응 조건을 결정하고자 한다.

  • PDF

A Study for Lifespan Prediction of Expansion by Temperature Status (온도상태에 따른 신축관 이음의 수명예측에 관한 연구)

  • Oh, Jung-Soo;Lee, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.424-429
    • /
    • 2018
  • In this study, an expansion joint that is susceptible to waterhammer was tested for its vibration durability. The operation data for the hydraulic actuator was the expansion length of the expansion joint when the waterhammer occurred. In the case of the vibration durability test, the internal temperature status of the expansion joint was assumed to be a stress factor and a lifespan prediction model was assumed to follow the Arrhenius model. A test was carried out by increasing the internal temperature status at $30^{\circ}C$, $50^{\circ}C$, and $65^{\circ}C$. By a linear transformation of the lifespan data for each temperature, a constant value and activation energy coefficient was induced for the Arrhenius equation and verified by comparing the value of a lifetime prediction model with the experimental value at $85^{\circ}C$. The failure modes of the ongoing or finished test were leakage, bellows separation, and internal deformation. In the future, a composite lifespan prediction model, including two more stress factors, will be developed.

전달오차에 의한 기어 구동계의 비선형응답 특성에 관한 연구

  • 신용호
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.25-30
    • /
    • 1998
  • 최근 산업이 발달함에 따라 기계회전계는 고속화, 정밀화 그리고 고부하에 따른 성능 향상과 내구성이 요구되고 있으면 기어 구동계는 강성, 효율향상, 저진동, 저소음 기어의 개발이 요구되고 있다. 그러나 기어는 제작오차, 조립오차, 치의 변형, 마모등으로 인하여 전달오차가 발생하게된다. (중략)

  • PDF

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

A Study on Durability of Automotive Propeller Shaft by Fatigue and Vibration (피로 및 진동에 의한 자동차 추진축의 내구성 연구)

  • Cho, Jae-Ung;Kim, Sei-Hwan;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1495-1501
    • /
    • 2011
  • Fatigue life and vibration can be analyzed at automotive propeller shaft during driving in this study. The york part is shown with the maximum equivalent stress and displacement of $1.3177{\times}10^3$Pa and $3.6148{\times}10^{-4}$m. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and Sample history. There are the most frequency as 80% in case of 'SAE bracket and the least frequency as 5% in case of Sample history'. Maximum amplitude displacement is 0.00261m at 58 Hz at forced vibration. As the result of this study is applied by the propeller shaf, the prevention on fatigue damage and the durability are predicted.

Evaluation of Fatigue Endurance on Expansion Joint Manufactured Fe-Mn Damping Alloy (Fe-Mn 제진 금속을 적용한 신축이음장치의 피로 내구성 평가)

  • Kim, Ki-Ik;Kim, Young-Jin;Ahn, Dong-Geun;Kim, Cheol-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.483-489
    • /
    • 2009
  • The endurance of expansion joint manufactured the Fe-Mn damping alloy reducing noise and vibration is analyzed into FEM (Finite Element Method) and fatigue test. The fatigue test have been performed using the expansion joint manufactured Fe-Mn damping alloy and the hydraulic actuator (25tonf). And the results of fatigue test show that the maximum strength is 237.6 MPa. Also that is 56.6 percent of Fe-Mn damping alloy yield strength (420 MPa). The loading plate size is prepared $57.7cm{\times}23.1cm$ and the loading plate's set position is located on expansion joint. The expansion joint manufactured the Fe-Mn damping alloy had not presented breaking behavior against 2,000,000 times fatigue test and identified the fatigue endurance.

Design and Its Influence Evaluation of Gear System Considering Vibratory Torque (진동토크를 고려한 기어시스템의 설계 및 영향 평가)

  • 이돈출;김지근;김태언;김상환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.316-323
    • /
    • 2003
  • The gear system is commonly applied in the marine propulsion shafting system using the diesel engine with the power take off/in system and it also is necessary to reduce propeller revolution increasing the propulsion efficiency. The diesel engine has the advantage more than other thermal engines in high thermal efficiency and mobility. But the large vibratory torque which induced by higher combustion pressure is transmitted to these gears. In this paper, the surface durability and bending stress of gear system considering vibratory and transient torque is evaluated by ISO and AGMA regulation. And the influence of these in gear design is investigated with the theoretical analysis and onboard measurement result of torsional vibration.

  • PDF

A Durability Study on the Acoustic Baffle for Underwater Environment (수중 환경용 음향 배플의 내구성 연구)

  • Seo, Young Soo;Kim, Dong Hyun;Kim, Jin Tae;Kang, Myeng Hwan;Jung, Woo Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.449-457
    • /
    • 2016
  • Cylindrical array sensor of a surface ship to detect an enemy is normally installed in the sonar dome. Reflected signals by some structures inside the sonar dome make unwanted signals. To minimize unwanted signals, acoustic baffles are used. Acoustic baffles are hard to install and replace, so the durability of acoustic baffles is an important design parameter. To verify the durability of acoustic baffle, accelerated aging tests according to temperature and pressure were performed. Acoustic baffle specimens were made and they are tested the visual and the performance (echo reduction and transmission loss) inspection before and after aging. After the inspection, the effect of accelerated aging of the acoustic baffles were discussed.

Control Performance Evaluation of MR Brake Depending on Durability (MR 브레이크의 내구성에 따른 제어성능평가)

  • Kim, Wan Ho;Park, Jhin Ha;Yang, Soon Yong;Shin, Cheol Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.660-666
    • /
    • 2016
  • This paper presents performance comparison results of magneto-rheological (MR) brake in the sense of wear characteristics. To create wear circumstance, the brake is operated in 100 000 cycles by DC motor. To make wear test in same design parameters such as the radius of the housing, ferromagnetic disc and gap size, small sample of stainless are inserted in housing of MR brake. The performances of brake are compared between the initial stage (no wear) and 100 000 revolution cycles operated stage (wear). At each circumstance, torque of the brake is measured and compared by applying step current and sinusoidal control input. The controller used in this work is a simple, but effective PID controller. It is demonstrated that the wear behavior is more obvious as the operating cycle is increased in the torque control process.