• 제목/요약/키워드: 진공성형

검색결과 146건 처리시간 0.023초

Nd-Fe-B-Co계 급냉리본과 Bond 자석의 자기적 성질 (Magenetic Properties of Nd-Fe-B-Co-based Melt-spun Ribbons an dTheir Bonded Magents)

  • 강계명;강기원;오영민;송진태
    • 한국재료학회지
    • /
    • 제3권2호
    • /
    • pp.175-184
    • /
    • 1993
  • Nd-Fe-B계에 Co와 Al을 첨가한 자석합금을 진공유도용해로에서 제조하여 이들 합금을 단롤법으로 melt-spun시켜 급냉리본을 얻었다. 제작된 급냉리본의 냉각속도에 따른 자기적 성질의 변화를 조사하였고, 최적의 급냉속도에서 제작된 리본을 파쇄하여 resin bond 자석을 제조하였으며, 이들 급냉리본 및 bond자석의 자기적 성질, 미세구조, 결정구조에 관하여 연구, 조사하였다. 이들 급냉리본의 자기적 성질은 급냉속도에 따라 크게 변하였으며 20m/sec전후에서 최적의 자기적 성질을 보였다. 이때의 급냉리본의 미세조직은 Nd-rich의 입계상이 미세한 N$d_2$F$e_14$B결정립을 둘러싼 cell 형의 구조였으며, 특히 Al이 2.1at%첨가된 리본시료에서는 iHc=15.5KOe, Br=7.8KG, (BH)max=8.5MGOe의 자기적 성질을 나타내었다. 최적의 급냉속도에서 제작된 리본을 polyamide resin과 2.5wt%의 비율로 혼합하여 상온에서 성형, 결합시켜 제작한 bond자석에서 보다 현저히 향상되었으며 유지시간이 8분인 경우 iHc=10.8KOe, Br=7.3KG, (BH)max=8.0MGOe의 값을 가졌다. 한편, 자구구조는 maze pattern이 주로 관찰되어 자화용이축인 C축이 배열되었으며 bond자석에서보다 hot-press 자석에서 자구폭이 보다 작았다.

  • PDF

폴리페닐렌에테르계 고분자 기판 소재의 유전특성에 대한 가교제 및 난연제의 영향 (Effects of Crosslinking Agent and Flame Retardant on the Dielectric Properties of Poly(phenylene ether)-based Polymer Substrate Material)

  • 김동국;박성대;유명재;이우성;강남기;임진규;경진범
    • 폴리머
    • /
    • 제33권1호
    • /
    • pp.39-44
    • /
    • 2009
  • 폴리페닐렌에테르[PPE, poly(phenylene ether)]를 기저수지로 사용하고, 가교제로 N,N'-m-phenylene-dimaleimide(PDMI), 난연제로 decabromodiphenylethane을 첨가하여 고분자 기판을 제작하였으며, 가교제와 난연제가 기판소재의 유전특성 등 물리적 특성에 미치는 영향을 고찰하였다. 개시제의 유무에 따른 PDMI의 열경화 특성을 DSC를 이용하여 분석하였으며, 이를 바탕으로 PPE-PDMI 테스트 조성을 설계하였다. 복합물 시트를 필름 코터로 성형한 후, 진공가압적층하여 테스트 기판을 제작하고, FDMI와 난연제의 함량에 따른 유전율, 유전손실, peel 강도, 납 내열성 및 난연성을 평가하였다. 유전율과 유전손실은 PDMI와 난연제의 함량에 따라 대체로 증가하는 경향을 나타내었으나, 납 내열성과 난연성은 개선된 결과를 나타내었다. Peel 강도는 PDMI가 10 wt% 이상 첨가되면 1 kN/m 이상의 높은 값을 나타내었지만, 난연제의 첨가량에 따라서는 소폭 감소하는 경향을 보였다. Gel content 측정결과로부터, PPE-PDMI의 반응 메카니즘은 semi-IPN 구조의 형성보다는 PPE와 PDMI의 crosslinking에 의한 망상구조 형성에 더 가까운 것으로 판단되었다. 최종적으로 1 GHz에서 유전율이 2.52$\sim$2.65, 유전손실이 0.002 미만으로 작은 고주파 대역용 고분자 복합체 기판소재를 얻을 수 있었다.

다공성의 $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$가 코팅된 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막의 제조 및 투과 특성 (Preparation and Oxygen Permeability of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ Porous Coating Layer)

  • 김종표;표대웅;박정훈;이용택
    • 멤브레인
    • /
    • 제22권1호
    • /
    • pp.8-15
    • /
    • 2012
  • 다공성 $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$로 코팅된 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막은 압출성형 및 dip coating 방법으로 제조 되었다. 코팅된 관형 분리막의 특성은 X-선 회절분석기(XRD)와 전자 주사 현미경(SEM)을 이용하여 분석하였으며, 분석결과 $2{\mu}m$의 다공성 코팅 층을 갖는 페롭스카이트 구조임을 알 수 있었다. 산소투과량 분석은 $750{\sim}950^{\circ}C$ 범위에서 공급측과 투과 측을 대기 중 공기와 진공으로 하여 수행되었다. 다공성의 $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$로 코팅된 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막의 산소투과량은 $950^{\circ}C$에서 $3.2mL/min{\cdot}cm^2$로 코팅되지 않은 분리막보다 높게 나타났으며, 11일 동안의 장기 안정성 실험결과 코팅 층에 의해 안정성이 증가됨을 알 수 있었다.

3-차원 보강 복합재 체결부의 피로강도 특성 연구 (A Study on the Fatigue Strength of the 3-D Reinforced Composite Joints)

  • 김지완;안우진;서경호;최진호
    • Composites Research
    • /
    • 제35권5호
    • /
    • pp.322-327
    • /
    • 2022
  • 복합재 체결부는 뛰어난 물성과 가벼운 구조의 수요로 널리 사용되고 있다. 하지만 두께 방향의 취약한 물성으로 인해 체결부 파손이 쉽게 발생한다. 이를 극복하기 위하여 체결부 끝단의 집중되는 응력을 완화시켜주는 Z-피닝, 스티칭 등 다양한 공법들이 적용되고 있다. Z-피닝 공법은 프리프레그의 두께 방향으로 금속 핀이나 카본 핀을 적용하여 보강하는 공법이고, 스티칭 공법은 프리폼에 상부 및 하부 섬유를 교차시켜 두께방향으로 기계적 강도를 향상시키는 방법이다. I-fiber 스티칭 공법은 Z-pinning 공법과 Stitching 공법을 보완한 유망한 공법이다. 본 논문에서는 I-fiber 스티칭 공법으로 보강된 Single-lap joint 시편을 오토클레이브 진공백 성형법으로 제작하여, 모재의 두께와 스티칭 각도에 따른 인장강도 및 피로강도 특성을 평가하여, I-fiber 보강 복합재 체결부 구조물의 보강효과를 검증하였다. 실험결과, 복합재 체결부의 두께가 얇을수록 I-fiber 보강효과가 더 높게 나타났으며 I-fiber로 보강된 복합재 체결부는 파손강도에서 약 52%, 피로강도에서 약 118% 우수한 특성을 나타냄을 확인하였다.

Metal 첨가물질에 따른 비정질 IGZO 투명전극 특성 연구

  • 신한재;황도연;이정환;이동익;박성은;박재성;김성진;이영주;서창택
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.368-370
    • /
    • 2013
  • 투명 전극은 전기전도도를 갖는 동시에 가시광선을 투과하는 소재를 말하며, 구체적으로는 빛의 파장이 400~700 nm 영역대의 가시광선을 80% 이상 투과하며 전기전도도가 비저항으로 $10^{-3}{\Omega}cm$이하이거나 면저항이 $10^3{\Omega}$/${\Box}$소재를 의미한다. 투명 전극은 전기전도도에 따라 사용되는 용도가 다양하다. LCD, PDP, OLED 와 같은 평판디스플레이 및 3D 디스플레이의 투명전극으로 사용되는 핵심재료일 뿐만 아니라 터치스크린, 투명필름, 대전방지막, 열반사막, EMI 방지막, 태양전지 분야에 광범위하게 이용되고 있다. 일반적으로, 투명전극 박막에 가장 많이 사용되고 있는 소재는 ITO (indium tin oxide)이나, 주성분인 In의 사용량 증가로 상용 ITO 타겟 가격이 급등하고 있음으며, 고가의 ITO 타겟을 대체하기 위한 저가의 투명전극 소재 개발이 절대적으로 요구되며, 신규 소재 개발을 통한 기술력 우위 선점이 필수적으로 요구되는 상황이다. 본 연구에서는 기존에 디스플레이 분야에서 널리 활용되는 고가의 ITO를 대체하기 위한 다성분 금속산화물 투명전극 스퍼터링 타겟 제조기술을 개발하기 위한 연구로서, Metal이 첨가된 In-Ga-Zn-O기반의 3성분계 투명도전성 소재를 조성설계, 고밀도 균질 타겟 제조 및 투명전극 박막을 형성하는 연구를 실시하였다. 고체산화물 산화인듐(In2O3)분말, 산화갈륨(Ga2O3) 분말그리고 산화아연(ZnO)분말과 Metal을 몰비로 칭량한 후 분말을 폴리에틸렌제 포트에 넣고 에탄올을 충분히 채운 후 지르코니아(ZrO2) 볼(ball)을 이용하여 24 h 동안 볼 밀링(ball milling) 방법으로 혼합한 뒤, $120^{\circ}C$의 플레이트위에서 마그네틱 바로 stirring하면서 건조하였다. 이 분말을 건조기에서 완전히 건조한 후 알루미나 유발을 이용해서 pulverizing한 후 sieving기를 이용하여 분말의 조립화를 하였다. 이 분말을 금형에 넣고 300 kg/$cm^2$의 압력으로 press하여 성형한 뒤 대기중에서 소결하였다 소결을 위한 승온 온도는 $10^{\circ}C$/min이었고 소결은 $1,450^{\circ}C$에서 6 h 동안 하였다. IGZO target의 조성 비율은 1:1:12 (mol%)를 사용하였으며, 첨가한 Metal은 Boron (B), Germanium (Ge), Barium (Ba)을 사용하여 타겟을 제작하였다. M-IGZO 박막은RF magnetron Sputter를 이용하여 증착하였으며, 앞선 실험에서 제작한 타겟을 사용하여 M-IGZO박막을 투명전극으로 사용하기 위한 각각의 특성을 파악하였다. 모든 박막은 상온에서 증착을 하였으며, 증착된 박막두께를 측정하기 위해 ${\alpha}$-step IQ를 사용하였고, 광학적 특성을 분석하기 위해 UV-Visible spectrophotometer 로 투과율을 측정하였다. 그리고 전기적 특성을 측정하기 위해 Hall effect measurement 및 4-probe를 사용하였으며, 결정성 분석을 위하여 XRD를 이용하여 분석하였다. 표1은 M-IGZO타겟을 사용하여 증착시간에 따른 면저항 특성을 나타내었다. Ge, B, Ba이 첨가된 IGZO 박막은 증착시간이 증가할수록 면저항이 낮아짐을 알 수 있었다. 또한, Ge이 첨가된 IGZO 박막이 다른 금속이 첨가된 IGZO 박막의 면저항보다 현저히 낮음을 알 수 있었다. Fig. 1(a), (b), (c)는 각 타겟을 동일한 조건으로 증착을 하여 광학적특성을 나타내는 그래프이다. GZO 박막의 광학적 특성을 보면 가시광 영역에서 평균 투과율은 모두 80% 이상으로 우수한 광투과 특성을 보여 투명전자소자로 사용가능하다. 특히, 자외선 영역을 모두 차단하는 UV cut 능력이 우수함을 알 수 있었다. 따라서, 금속이 첨가된 IGZO 박막을 태양전지용 투명전극으로 사용할 경우, 자외선에 의하여 수명이 단축되는 현상을 줄여줄 수 있음을 기대할 수 있으며 내구성 향상에 크게 기여할 것으로 보인다. Fig. 2는 Ge=0, 0.5, 5%인 IGZO 투명전극을 총 40회 반복하여 증착을 실시한 후 각각의 면저항을 측정한 결과이다. 실험결과에 따르면 Ge가 0%, 5%인 IGZO 투명전극은 증착을 거듭할수록 면저항이 증가하는 결과를 나타내었으며, 0.5%인 IGZO 투명전극은 점차 안정화되어가는 결과를 나타내었다. 따라서 안정화 되었을 때 평균 면저항은 26ohm/sq.로 나타났으며, 광투과율은 Fig. 3과 같이 가시광영역에서 평균 80%이상의 결과를 보였으며, 550 nm에서는 86.36%의 우수한 특성을 나타내었다. 본 연구에서는 Metal이 첨가된 In-Ga-Zn-O기반의 3성분계 투명도전성 소재 target을 제작하여 RF magnetron sputter로 박막을 형성한 후 특성을 비교하였다. M-IGZO target 중 Ge (0.5%)을 첨가한 IGZO 타겟을 사용한 투명전극이 가장 우수한 특성을 보였으며, 제작된 M-target의 In 비율이 30% 정도로 기존의 ITO (90%) 대비하여 투명전극 제작 단가를 절감할 수 있다.

  • PDF

패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법 (Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing)

  • 강영림;박태완;박은수;이정훈;왕제필;박운익
    • 마이크로전자및패키징학회지
    • /
    • 제27권4호
    • /
    • pp.83-89
    • /
    • 2020
  • 지난 수십년간 인류에게 핵심적인 에너지 자원이었던 화석연료가 갈수록 고갈되고 있고, 산업발전에 따른 오염이 심해지고 있는 환경을 보호하기 위한 노력의 일환으로, 친환경 이차전지, 수소발생 에너지 장치, 에너지 저장 시스템 등과 관련한 새로운 에너지 기술들이 개발되고 있다. 그 중에서도 리튬이온 배터리 (Lithium ion battery, LIB)는 높은 에너지 밀도와 긴 수명으로 인해, 대용량 배터리로 응용하기에 적합하고 산업적 응용이 가능한 차세대 에너지 장치로 여겨진다. 하지만, 친환경 전기 자동차, 드론 등 증가하는 배터리 시장을 고려할 때, 수명이 다한 이유로 어느 순간부터 많은 양의 배터리 폐기물이 쏟아져 나올 것으로 예상된다. 이를 대비하기 위해, 폐전지에서 리튬 및 각종 유가금속을 회수하는 공정개발이 요구되는 동시에, 이를 재활용할 수 있는 방안이 사회적으로 요구된다. 본 연구에서는, 폐전지의 재활용 전략소재 중 하나인, 리튬이온 배터리의 대표적 양극 소재 Li2CO3의 나노스케일 패턴 제조 방법을 소개하고자 한다. 우선, Li2CO3 분말을 진공 내 가압하여 성형하고, 고온 소결을 통하여 매우 순수한 Li2CO3 박막 증착용 3인치 스퍼터 타겟을 성공적으로 제작하였다. 해당 타겟을 스퍼터 장비에 장착하여, 나노 패턴전사 프린팅 공정을 이용하여 250 nm 선 폭을 갖는, 매우 잘 정렬된 Li2CO3 라인 패턴을 SiO2/Si 기판 위에 성공적으로 형성할 수 있었다. 뿐만 아니라, 패턴전사 프린팅 공정을 기반으로, 금속, 유리, 유연 고분자 기판, 그리고 굴곡진 고글의 표면에까지 Li2CO3 라인 패턴을 성공적으로 형성하였다. 해당 결과물은 향후, 배터리 소자에 사용되는 다양한 기능성 소재의 박막화에 응용될 것으로 기대되고, 특히 다양한 기판 위에서의 리튬이온 배터리 소자의 성능 향상에 도움이 될 것으로 기대된다.