Nd-Fe-B-Co계 급냉리본과 Bond 자석의 자기적 성질

Magenetic Properties of Nd-Fe-B-Co-based Melt-spun Ribbons an dTheir Bonded Magents

  • 발행 : 1993.04.01

초록

Nd-Fe-B계에 Co와 Al을 첨가한 자석합금을 진공유도용해로에서 제조하여 이들 합금을 단롤법으로 melt-spun시켜 급냉리본을 얻었다. 제작된 급냉리본의 냉각속도에 따른 자기적 성질의 변화를 조사하였고, 최적의 급냉속도에서 제작된 리본을 파쇄하여 resin bond 자석을 제조하였으며, 이들 급냉리본 및 bond자석의 자기적 성질, 미세구조, 결정구조에 관하여 연구, 조사하였다. 이들 급냉리본의 자기적 성질은 급냉속도에 따라 크게 변하였으며 20m/sec전후에서 최적의 자기적 성질을 보였다. 이때의 급냉리본의 미세조직은 Nd-rich의 입계상이 미세한 N$d_2$F$e_14$B결정립을 둘러싼 cell 형의 구조였으며, 특히 Al이 2.1at%첨가된 리본시료에서는 iHc=15.5KOe, Br=7.8KG, (BH)max=8.5MGOe의 자기적 성질을 나타내었다. 최적의 급냉속도에서 제작된 리본을 polyamide resin과 2.5wt%의 비율로 혼합하여 상온에서 성형, 결합시켜 제작한 bond자석에서 보다 현저히 향상되었으며 유지시간이 8분인 경우 iHc=10.8KOe, Br=7.3KG, (BH)max=8.0MGOe의 값을 가졌다. 한편, 자구구조는 maze pattern이 주로 관찰되어 자화용이축인 C축이 배열되었으며 bond자석에서보다 hot-press 자석에서 자구폭이 보다 작았다.

Abstract Co-and/or AI-added Nd-Fe-B-based magnetic alloys were fabricated by using vacuum induction melting frunace, and melt-spun ribbons were made of the magnetic alloys with single roll rapid quenching method. The variation of magnetic properties of the melt-spun ribbons as a function of Cuwheel velocity (Vs) were investigated. Bonded magnets were made of the optimally quenched ribbon fragments, and the magnetic properties of the melt-spun ribbons and the bonded magnets were studied, relating to the microstructure and crystalline structure. Cu-wheel surface velocity had a strong effect on the magnetic properties of the melt-spun ribbons, and the maximum properties were obtained around Vs =20m/sec. The optimally quenched ribbon had a cellura-type microstructure, in which fine N$d_2$F$e_14$B grains were surrounded by thin Nd-rich phase. In case of a 2.1at% AI-added melt-spun ribbon, the magnetic properties were as follows: iHc, Br, and (BH)max were 15.5KOe, 7.8KG and 8.5MGOe respectively. And resin bonded magnets were fabricated by mixing optimally quenched ribbon fragments with 2.5wt % polyamide resin, compacting and binding at room temperature. The iHc, Br and (BH)max of bonded magnet were lO.2KOe, 4.4KG and 3.3MGOe respectively. And hot-pressed magnets were made by pressing the overquenched ribbons at high temperature. The magnetic properties of hot-pressed magnets were better than those of bonded magnets, and when the holding time was 8 minutes, the iHc, Br, and (BH)max of the hot-pressed magnet were 1O.8KOe, 7.3KG and 8.0MGOe respectively. Domain structure was mainly maze pattern, which means that the easy magnetization axis could be aligned, and the domain width of the hot-pressed magnets was smaller than that of bonded magnets.

키워드

참고문헌

  1. J. Appl. Phys. v.55 M. Sagawa;S. Fujimura;N. Togata
  2. IEEE Trans. Magn. MAG-20 M. Sagawa;S. Fujimura;H. Yamamoto;Y. Matsuura
  3. J. Appl. v.55 J.J. Croat;J.F. Herbst;R.W. Lee
  4. Phs. Rev. v.B29 J.F. Herbst;J.J. Croat;F.E. Pinkerton
  5. Appl. Phys. Lett. v.46 Y. Matsuura;S. Hirosawa;H. Yamamoto;S. Fujimura;M. Sagawa
  6. J. Appl. Phys. v.63 C.D. Fuerst; J.F. Herbst
  7. IEEE Trans. Magn. MAG-23 T. Mizoguchi;I. Sakai;H. nia;K. Inomata
  8. J. Appl. phys. v.64 K.Yajima;H. Nakamura;O. Kohmoto;T. Yoneyama
  9. Paper NO. 18PO215 at the 10th International Workshop on Rare-Earth Magnets and Their Applicationa H. Yamamoto;M. Nagakura;Y. Ozawa;T. Katsuno
  10. J. Appl. Phys. v.63 S.Z. Zhou;C. Guo;Q. hu
  11. J. Appl. Phys. v.63 D.R. Grauder;M.H. Froning;R.J. White
  12. Appl. Phys. Lett. v.46 R.W. Lee
  13. IEEE Trans. Magn. MAG-21 R.W. Lee;E.G. Brewer;N.A. Schaffel
  14. J. Appl. Phys. v.62 R.K. Mishra
  15. J. Appl. Phys. v.57 J.D. Livingston
  16. IEEE Trans. Magn. MAG-22 Ying Chang Yang;W.J. James
  17. J. Appl. Phys. v.70 Lin Li;D.E. Luzzi;C.D. Graham, Jr.
  18. J. Appl. Phys. v.64 L.J. Eshelman;K.A.Young;V. Panchanathan;J.J. Croat
  19. J. Appl. Phys. v.64 R.K. Mishra
  20. J. Appl. Phys. v.63 F.E. Pinkerton
  21. Intro. to Magnetic Materials B.D. Culity