• Title/Summary/Keyword: 직접 제어

Search Result 1,957, Processing Time 0.033 seconds

Properties of the interfacial oxide and high-k dielectrics in $HfO_2/Si$ system ($HfO_2/Si$시스템의 계면산화막 및 고유전박막의 특성연구)

  • 남서은;남석우;유정호;고대홍
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.45-47
    • /
    • 2002
  • 반도체 소자의 고집적화 및 고속화가 요구됨에 따라 MOSFET 구조의 게이트 절연막으로 사용되고 있는 SiO₂ 박막의 두께를 감소시키려는 노력이 이루어지고 있다. 0.1㎛ 이하의 소자를 위해서는 15Å 이하의 두께를 갖는 SiO₂가 요구된다. 하지만 두께감소는 절연체의 두께와 지수적인 관계가 있는 누설전류를 증가시킨다[1-3]. 따라서 같은 게이트 개패시턴스를 유지하면서 누설전류를 감소시키기 위해서는 높은 유전상수를 갖는 두꺼운 박막이 요구되는 것이다. 그러므로 약 25정도의 높은 유전상수를 갖고 5.2~7.8 eV 정도의 비교적 높은 bandgap을 갖으며, 실리콘과 열역학적으로 안정한 물질로 알려진 HfO2[4-5]가 최근 큰 관심을 끌고 있다. 본 연구에서는 HfO₂ 박막을 실제 소자에 적용하기 위하여 전극 및 열처리에 따른 HfO₂ 박막의 미세구조 및 전기적 특성에 관한 연구를 수행하였다. 이를 위해, HfO₂ 박막을 reactive DC magnetron sputtering 방법으로 증착하고, XRD, TEM, XPS를 사용하여 ZrO₂ 박막의 미세구조를 관찰하였으며, MOS 캐패시터 구조의 C-V 및 I-V 특성을 측정하여 HfO₂ 박막의 전기적 특성을 관찰하였다. HfO₂ 타겟을 스퍼터링하면 Ar 스퍼터링에 의해 에너지를 가진 산소가 기판에 스퍼터링되어 Si 기판과 반응하기 때문에 HfO₂ 박막 형성과 더불어 Si 기판이 산화된다[6]. 그래서 HfO₂같은 금속 산화물 타겟 대신에 순수 금속인 Hf 타겟을 사용하고 반응성 기체로 O₂를 유입시켜 타겟이나 시편위에서 high-k 산화물을 만들면 SiO/sub X/ 계면층을 제어할 수 있다. 이때 저유전율을 갖는 계면층은 증착과 열처리 과정에서 형성되고 특히 500℃ 이상에서 high-k/Si를 열처리하면 계면 SiO₂층은 증가하는 데, 이것은 산소가 HfO₂의 high-k 박막층을 뚫고 확산하여 Si 기판을 급속히 산화시키기 때문이다. 본 방법은 증착에 앞서 Si 표면을 희석된 HF를 이용해 자연 산화막과 오염원을 제거한 후 Hf 금속층과 HfO₂ 박막을 직류 스퍼터링으로 증착하였다. 우선 Hf 긍속층이 Ar 가스 만의 분위기에서 증착되고 난 후 공기중에 노출되지 않고 연속으로 Ar/O₂ 가스 혼합 분위기에서 반응 스퍼터링 방법으로 HfO₂를 형성하였다. 일반적으로 Si 기판의 표면 위에 자연적으로 생기는 비정질 자연 산화막의 두께는 10~15Å이다. 그러나 Hf을 증착한 후 단면 TEM으로 HfO₂/Si 계면을 관찰하면 자연 산화막이 Hf 환원으로 제거되기 때문에 비정질 SiO₂ 층은 관찰되지 않았다. 본 실험에서는 HfO2의 두께를 고정하고 Hf층의 두께를 변수로 한 게이트 stack의 물리적 특성을 살펴보았다. 선증착되는 Hf 금속층을 0, 10, 25Å의 두께 (TEM 기준으로 한 실제 물리적 두께) 로 증착시키고 미세구조를 관찰하였다. Fig. 1(a)에서 볼 수 있듯이 Hf 금속층의 두께가 0Å일때 13Å의 HfO₂를 반응성 스퍼터링 방법으로 증착하면 HfO₂와 Si 기판 사이에는 25Å의 계면층이 생기며, 이것은 Ar/O₂의 혼합 분위기에서의 스퍼터링으로 인한 Si-rich 산화막 또는 SiO₂ 박막일 것이다. Hf 금속층의 두께를 증가시키면 계면층의 성장은 억제되는데 25Å의 Hf 금속을 증착시키면 HfO₂ 계면층은 10Å미만으로 관찰된다. 그러므로 Hf 금속층이 충분히 얇으면 플라즈마내 산소 라디칼, 이온, 그리고 분자가 HfO₂ 층을 뚫고 Si 기판으로 확산되어 SiO₂의 계면층을 성장시키고 Hf 금속층이 두꺼우면 SiO/sub X/ 계면층을 환원시키면서 Si 기판으로의 산소의 확산은 막기 때문에 계면층의 성장은 억제된다. 따라서 HfO₂/Hf(Variable)/Si 계에서 HfO₂ 박막이 Si 기판위에 직접 증착되면, 순수 HfO₂ 박막의 두께보다 높은 CET값을 보이고 Hf 금속층의 두께를 증가시키면 CET는 급격하게 감소한다. 그러므로 HfO₂/Hf 박막의 유효 유전율은 단순 반응성 스퍼터링에 의해 형성된 HfO₂ 박막의 유전율보다 크다. Fig. 2에서 볼 수 있듯이 Hf 금속층이 너무 얇으면 계면층의 두께가 두꺼워 지고 Hf 금속층이 두꺼우면 HfO₂층의 물리적 두께가 두꺼워지므로 CET나 EOT 곡선은 U자 형태를 그린다. Fig. 3에서 Hf 10초 (THf=25Å) 에서 정전 용량이 최대가 되고 CET가 20Å 이상일 때는 high-k 두께를 제어해야 하지만 20Å 미만의 두께를 유지하려면 계면층의 두께를 제어해야 한다.

  • PDF

A study on the location of fire fighting appliances in cargo ships (화물선 소화설비 비치에 대한 연구)

  • Ha, Weon-Jae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.852-858
    • /
    • 2016
  • To safeguard the accommodation spaces on cargo ships from fire, structural fire protection provisions introduced by SOLAS and these measures retard the propagation of flames and smoke. SOLAS also specifies provisions for fire fighting drills. These provisions are a combination of regulations regarding structure and equipment and those dealing with the human element for the fire protection and effective responses in the event of fire. Requirements related to the human element play a supporting role to the requirements for structure and equipment because the present accommodation structure and equipment are insufficient for extinguishing a fire, therefore, fire-extinguishing activity performed by crew members is essential. To reduce human error and ensure effective fire fighting, it is necessary to install a fire-fighting system and improve the fire fighting process. The fundamental concept of fire fighting exercises is to commence fire fighting before the fire grows too big to extinguish. It is essential to relocate the storage place of fire fighting equipment to expedite the fire-fighting exercise. This study was carried out to reduce human risk for this purpose, the fire control station was relocated to a site that could be accessed from the open deck. Further, two sets of a fire fighter's outfit were stored at the same site. This relocation eliminated the risk of the crew reentering to operate the fire fighting system in the fire control station and allowed the crew to pick up the fire fighters' outfits quickly in the event of a fire. In addition, it was proposed that the IIC method be made mandatory. This method is combination of automatic fire detection system and sprinkler system which can reduce the risk of the fire fighting exercises for the crew and to suppress fire in the initial stage. This study was carried out to provide a foundation to the possible amendment of the relevant SOLAS regulations and national legislation.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Development of the Risk Evaluation Model for Rear End Collision on the Basis of Microscopic Driving Behaviors (미시적 주행행태를 반영한 후미추돌위험 평가모형 개발)

  • Chung, Sung-Bong;Song, Ki-Han;Park, Chang-Ho;Chon, Kyung-Soo;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.133-144
    • /
    • 2004
  • A model and a measure which can evaluate the risk of rear end collision are developed. Most traffic accidents involve multiple causes such as the human factor, the vehicle factor, and the highway element at any given time. Thus, these factors should be considered in analyzing the risk of an accident and in developing safety models. Although most risky situations and accidents on the roads result from the poor response of a driver to various stimuli, many researchers have modeled the risk or accident by analyzing only the stimuli without considering the response of a driver. Hence, the reliabilities of those models turned out to be low. Thus in developing the model behaviors of a driver, such as reaction time and deceleration rate, are considered. In the past, most studies tried to analyze the relationships between a risk and an accident directly but they, due to the difficulty of finding out the directional relationships between these factors, developed a model by considering these factors, developed a model by considering indirect factors such as volume, speed, etc. However, if the relationships between risk and accidents are looked into in detail, it can be seen that they are linked by the behaviors of a driver, and depending on drivers the risk as it is on the road-vehicle system may be ignored or call drivers' attention. Therefore, an accident depends on how a driver handles risk, so that the more related risk to and accident occurrence is not the risk itself but the risk responded by a driver. Thus, in this study, the behaviors of a driver are considered in the model and to reflect these behaviors three concepts related to accidents are introduced. And safe stopping distance and accident occurrence probability were used for better understanding and for more reliable modeling of the risk. The index which can represent the risk is also developed based on measures used in evaluating noise level, and for the risk comparison between various situations, the equivalent risk level, considering the intensity and duration time, is developed by means of the weighted average. Validation is performed with field surveys on the expressway of Seoul, and the test vehicle was made to collect the traffic flow data, such as deceleration rate, speed and spacing. Based on this data, the risk by section, lane and traffic flow conditions are evaluated and compared with the accident data and traffic conditions. The evaluated risk level corresponds closely to the patterns of actual traffic conditions and counts of accident. The model and the method developed in this study can be applied to various fields, such as safety test of traffic flow, establishment of operation & management strategy for reliable traffic flow, and the safety test for the control algorithm in the advanced safety vehicles and many others.

Impacts of Immigrant Workers on Regional Economy in S. Korea (이주노동자의 유입이 지역경제에 미치는 영향)

  • Choi, Byung-Doo
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.3
    • /
    • pp.369-392
    • /
    • 2009
  • Recently international movements of labour as well as those of goods and other production elements such as capitals and technology have been increased rapidly under the process of glocalization. The huge amount of immigrant workers' in-flows makes increasing influences on regional economy in South Korea. This paper examines such impacts of immigrant workers on local labor markets, productivity. and industrial composition and innovation on the basis of analysis of empirical data and review of existing literature on the subject. Despite a problem of simplification, some reasoning can be listed as follows: First of all, the inflow of immigrant workers has an effect of job displacement among domestic simple workers, with duel effects on the status of native workers; secondly, Immigrant workers give a positive effect on local productivity, but only with low level of wage and of purchasing power; thirdly, the in-flow of immigrant workers seems to prevent existing industries from transformation towards new ones and/or from automation and innovation of production facilities, while there seems no clear relationship with foreign direct investments of local firms.

  • PDF

A study of on site Pilot plant test of drying sewage sludge using Chain crusher flash dryer (타격기류 건조장치에 의한 하수슬러지의 건조 실증실험에 관한 연구)

  • Ahn, June-Shu;Kim, Byung-Tae;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5628-5636
    • /
    • 2012
  • Effective drying method of sewage sludge is researched in this study. To dry the sludge, chain crusher flash dryer was adopted to remove moisture content in the cell which is mostly responsible for the sludge moisture content. And Pilot plant experiment was conducted in real life sewage treatment plant to study effect and characteristics of operating conditions. Operating variables include sludge feeding rate, rotational speed of chain, process temperature and feed moisture content. As rotational speed of chain increased, product yield of sludge increased, and the performance of the testing system increased. And, as process temperature increased, the sludge drying efficiency increased. It is found that optimum feed moisture content is at 60% which shows the maximum sludge product yield and about 10 moisture content(%) of sludge product. Sludge feed rate showed optimal value, and when the sludge feed rate is exceeded, sludge product yield did not increased but the amount of residue increased. Pilot plant experiment results are as follow. The optimal condition for the rotational speed of chain 1600rpm(max. speed), final sludge discharge temperature $80^{\circ}C$, feed moisture content 60%, and feed rate 60kg/h. When the plant was operated at the optimal conditions, the final product showed fairly good results such as sludge product yield 85.5%, moisture content 11.0% and sludge drying efficiency 81.7%.

Effect of Reaction Gases on PFCs Treatment Using Arc Plasma Process (아크 플라즈마를 이용한 과불화합물 처리공정에서 반응가스에 의한 효과)

  • Park, Hyun-Woo;Choi, Sooseok;Park, Dong-Wha
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • The treatment of chemically stable perflourocompounds (PFCs) requires a large amount of energy. An energy efficient arc plasma system has been developed to overcome such disadvantage. $CF_4$, $SF_6$ and $NF_3$ were injected into the plasma torch directly, and net plasma power was estimated from the measurement of thermal efficiency of the system. Effects of net plasma power, waste gas flow rate and additive gases on the destruction and removal efficiency (DRE) of PFCs were examined. The calculation of thermodynamic equilibrium composition was also conducted to compare with experimental results. The average thermal efficiency was ranged from 60 to 66% with increasing waste gas flow rate, while DRE of PFCs was decreased with increasing gas flow rate. On the other hand, DRE of each PFCs was increased with the increasing input power. Maximum DREs of $CF_4$, $SF_6$ and $NF_3$ were 4%, 15% and 90%, respectively, without reaction gas at the fixed input power and waste gas flow rate of 3 kW and 70 L/min. A rapid increase of DRE was found using hydrogen or oxygen additional gases. Hydrogen was more effective than oxygen to decompose PFCs and to control by-products. The major by-product in the arc plasma process with hydrogen was hydrofluoric acid that is easy to be removed by a wet scrubber. DREs of $CF_4$, $SF_6$ and $NF_3$ were 25%, 39% and 99%, respectively, using hydrogen additional gas at the waste gas flow rate of 100 L/min and the input power of 3 kW.

Large-scale Virtual Power Plant Management Method Considering Variable and Sensitive Loads (가변 및 민감성 부하를 고려한 대단위 가상 발전소 운영 방법)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Lee, Yong-Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.225-234
    • /
    • 2015
  • Nowadays a Virtual Power Plant (VPP) represents an aggregation of distributed energy resource such as Distributed Generation (DG), Combined Heat and Power generation (CHP), Energy Storage Systems (ESS) and load in order to operate as a single power plant by using Information and Communication Technologies, ICT. The VPP has been developed and verified based on a single virtual plant platform which is connected with a number of various distributed energy resources. As the VPP's distributed energy resources increase, so does the number of data from distributed energy. Moreover, it is obviously inefficient in the aspects of technique and cost that a virtual plant platform operates in a centralized manner over widespread region. In this paper the concept of the large-scale VPP which can reduce a error probability of system's load and increase the robustness of data exchange among distributed energy resources will be proposed. In addition, it can directly control and supervise energy resource by making small size's virtual platform which can make a optimal resource scheduling to consider of variable and sensitive load in the large-scale VPP. It makes certain the result is verified by simulation.

Variation of Thermal Resistance of LED Module Embedded by Thermal Via (Thermal Via 구조 LED 모듈의 열저항 변화)

  • Shin, Hyeong-Won;Lee, Hyo-Soo;Bang, Jae-Oh;Yoo, Se-Hoon;Jung, Seung-Boo;Kim, Kang-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.95-100
    • /
    • 2010
  • LED (Light Emitting Diode) is 85% of the applied energy is converted into heat that is already well known. Lately, LED chips increasing the capacity as result delivered to increase the heat of the LED products and module that directly related to life span and degradation. Thus, in industry the high-power LED chip to control the heat generated during the course of the study and the existing aluminum, copper adhesives, and uses MLC (Metal clad laminate) structures using low-cost FR4 and copper CCL (Copper Clad Laminate) to reduce costs by changing to a study being carried out. In this study, using low-cost CCL Class, mounted 1W LED chip to analyze changes in the thermal resistance. In addition, heat dissipation in the CCL to facilitate a variety of thermal via design outside of the heat generated by the LED chip to control and facilitate the optimal structure of the heat dissipation is suggested.

Performance Evaluation of Chloride and Sulfate Removal using Anion Exchange Resin in Saturated Ca(OH)2 Solutions (음이온 교환수지를 이용한 포화 수산화칼슘 수용액 내 염소이온 및 황산이온 제거 특성 평가)

  • Lee, Yun-Su;Chen, Zheng-Xin;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.146-154
    • /
    • 2017
  • Recently, self-healing concrete has been researched as maintenance and repair of concrete structures are important challenges we face. This paper focused on possibility of ion exchange resin as a novelty material directly and actively controlling harmful ions of concrete, whereas most self-healing concrete researches have been focused on methods to automatically filling and repairing internal crack of concrete. Because equilibrium properties between ion exchange resin and harmful ion is important before design of cement mixing proportion, it was conducted to remove chloride or sulfate in saturated $Ca(OH)_2$ solutions containing NaCl or $Na_2SO_4$. The removal performance was analyzed using kinetic equation and isothermal equation. Consequently, the removal properties of anion exchange resin were relatively more dependent on pseudo second reaction equation and Langmuir equation than pseudo first reaction equation and Freundlich equation. And it was concluded that each chloride and sulfate can be removed to the maximum 1068 ppm and 1314 ppm.