Variation of Thermal Resistance of LED Module Embedded by Thermal Via

Thermal Via 구조 LED 모듈의 열저항 변화

  • Shin, Hyeong-Won (Advanced Material Division, Korea institute of Industrial Technology) ;
  • Lee, Hyo-Soo (Advanced Material Division, Korea institute of Industrial Technology) ;
  • Bang, Jae-Oh (Advanced Material Division, Korea institute of Industrial Technology) ;
  • Yoo, Se-Hoon (Advanced Material Division, Korea institute of Industrial Technology) ;
  • Jung, Seung-Boo (Dept. of Adv. Mater. Eng., Sungkyunkwan Univ.) ;
  • Kim, Kang-Dong (Samsung Electro-Mechanics Co.)
  • Received : 2010.12.07
  • Accepted : 2010.12.22
  • Published : 2010.12.30

Abstract

LED (Light Emitting Diode) is 85% of the applied energy is converted into heat that is already well known. Lately, LED chips increasing the capacity as result delivered to increase the heat of the LED products and module that directly related to life span and degradation. Thus, in industry the high-power LED chip to control the heat generated during the course of the study and the existing aluminum, copper adhesives, and uses MLC (Metal clad laminate) structures using low-cost FR4 and copper CCL (Copper Clad Laminate) to reduce costs by changing to a study being carried out. In this study, using low-cost CCL Class, mounted 1W LED chip to analyze changes in the thermal resistance. In addition, heat dissipation in the CCL to facilitate a variety of thermal via design outside of the heat generated by the LED chip to control and facilitate the optimal structure of the heat dissipation is suggested.

LED (Light Emitting Diode)는 인가된 에너지 대비 15%가 빛으로, 나머지 85%가 열로 변환되는 것은 이미 잘 알려져 있다. 최근 LED칩 용량이 증가함에 따라서 LED칩으로부터 방출되는 열은 더욱 증가하게 되고 이는 LED 제품의 성능저하와 수명단축에 직접적인 영향을 미친다. 따라서, 산업계에서는 고출력 LED 칩에서 발생하는 열을 제어하기 위해 제품설계구조 연구가 진행 중에 있으며 또한, 부가적으로, 기존의 알루미늄, 접착제 및 구리를 사용하는 MCL(Metal Clad Laminate)구조에서 저가형 FR4 및 구리를 사용하는 CCL (Copper Clad Laminate)로 변경하여 원가절감을 하고자 하는 대체 소재연구가 진행되고 있다. 본 연구에서는 저가형 CCL에 열방출 극대화를 위하여 열비아(thermal via)를 디자인별로 형성한 후 1 W급 LED 칩을 실장하여 열저항(thermal resistance) 변화를 분석하였으며, 최적의 열방출을 위한 열비아 구조를 제안하고자 하였다.

Keywords

References

  1. H. S. Lee, S. H. Son and C. S. Lee, "Thermal Management of LED Assembled PCB Through Via Design Optimization", Proc. EUROMAT 2009, Glasgow, E13-1, The Institute of Materials, Minerals & Mining (2009).
  2. M. Arik, C. Becker, S. Weaver and J. Petroski, "Thermal Management of LEDs: Package to System", Proc. SPIE, 5187, 64 (2004).
  3. A. C. Brombacher, "Reliability of Design: CAE Techniques for Electronic Components and Systems", Microelectron. Reliab., 32, 1046 (1992). https://doi.org/10.1016/0026-2714(92)90444-P
  4. J. D. G. Lacey, D. V. Morgan, Y. H. Aliyu and H. Thomas, "The Reliability of $(Al_{x}Ga_{1-x})_{0.5}In_{0.5}P$ Visible Light-emitting Diodes", Qual. Reliab. Engng. Int. 16, 45, (2000). https://doi.org/10.1002/(SICI)1099-1638(200001/02)16:1<45::AID-QRE302>3.0.CO;2-Q
  5. N. A. A. Karim, P. A. A. Narayana and K. N. Seetharamu, "Thermal Analysis of LED Package", Microelectron. Int., 23(1), 19 (2006). https://doi.org/10.1108/13565360610642714
  6. M. Arik, J. Petroski and S. Weaver, "Thermal Challenges in the Furture Generation Solid State Lighting Applications: Light Emitting Diodes", Proc. ITHERM 2002, San Diego, 113, IEEE (2002).
  7. Y. Gu, N. Narendran and J. P. Freyssinier, "White LED Performance", Proc. of SPIE, 5530, 119 (2004).
  8. R. S. Li, "Optimization of Thermal Via Design Parameters Based on an Analytical Thermal Resistance Model", Proc. ITHERM '98, Seattle, 475, IEEE (1998).
  9. H. G. Kang, J. K. Park, C. H. Kim and S. C. Choi, "Fabrication of Red LED with Mn Activated $CaAl_{12}O_{19}$ Phosphors on InGaN UV Bare Chip", J. Microelectron. Packag. Soc., 16(4), 87 (2009).
  10. T. H. Lee, U. J. Whang and M. H. Shin, "Thermal Analysis of GaN-based LEDs Using Thermal Resistance Measurement", The Korean Microelectronics and Packaging Society (KMEPS) 2004 Fall Meeting Abstracts, Daejeon, 29, KMEPS (2004).