• Title/Summary/Keyword: 직접파

Search Result 609, Processing Time 0.025 seconds

Characterization of optical waveguides with near - field scanning optical microscope (근접장 주사 광학현미경을 이용한 광 도파로 특성 연구)

  • Ji, Won-Soo;Kim, Dae-Chan;Lee, Seung-Gol;O, Beom-Hoan;Lee, El-Hang
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • The propagation characteristic of an optical waveguide was investigated by measuring with a near-field scanning optical microscope (NSOM) the evanescent field formed at the neighbor of its core-cladding interface. For this purpose, the NSOM system was developed specially as a form of Photon scanning tunneling microscope. The evanescent field distributions of several channel waveguides were measured at the wavelength of 1550 ㎚, and the usefulness of the system was verified by comparing experimental results with simulation results. In particular, the interference phenomena of the guided modes during their propagation along a multimode channel waveguide could be observed directly from the measured evanescent field distribution.

Dynamic Instability of Submerged Floating Tunnels due to Tendon Slack (긴장재 느슨해짐에 따른 해중 터널의 동적 불안정 거동)

  • Won, Deok Hee;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.401-410
    • /
    • 2017
  • This study deals with dynamic instability of a tendon moored submerged floating tunnel (SFT) due to tendon slack. In general, environmental loadings such as wave and current govern SFT design. Especially, the wave force, whose amplitude and direction continuously change, directly induces the dynamic behavior of the SFT. The motion of the floating tube, induced by the wave force, leads dynamic response of the attached tendons and the dynamic change of internal forces of the tendons significantly affects to the fatigue design as well as the structural strength design. When the severe motion of the SFT occurs due to significant waves, tendons might lose their tension and slack so that the floating tube can be transiently instable. In this study, the characteristics of dynamic instability of the SFT due to tendon slack are investigated performing hydrodynamic analysis. In addition, the effects of draft, buoyancy-weight ratio, and tendon inclination on tendon slack and dynamic instability behavior are analytically investigated.

Tsunami Propagation Model Using Boussinesq Equation (Boussinesq 방정식을 이용한 지진해일 전파모형)

  • Song, Min Jong;Ha, Tae Min;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.57-57
    • /
    • 2011
  • 지진해일은 진행속도가 빠르고 파장이 길며 파형의 변화 없이 먼 거리를 진행 할 수 있어 주변지역은 물론 멀리 떨어진 지역에도 심한 범람피해를 야기시킨다. 지진해일의 일반적인 특징으로 장파와 단파가 합성되어 있고 먼 거리를 전파할 경우 분산효과의 역할이 중요하게 된다. 특히 우리나라의 동해안에 영향을 주는 지진해일은 단주기파 성분이 강하고 파장에 비해 먼 거리를 전파하기에 분산을 고려하는 선형 Boussinesq 방정식을 지배방정식으로 사용하는 것이 바람직하다. 하지만 지금까지의 지진해일 전파모의를 위한 모형은 선형 Boussinesq 방정식의 복잡한 계산과 계산시간이 길다는 단점 때문에 선형 천수방정식을 지배방정식으로 사용하고 분산효과는 수치분산을 이용하여 고려해왔다. 지진해일 해석 시 일반적으로 사용되어 오던 기존의 leap-frog 유한차분 모형(Imamura et al., 1988; 조용식, 1996)은 지배방정식으로 선형 천수방정식을 사용하고 파의 분산효과는 수치분산을 이용하여 고려하므로 정해진 시간 간격에 대해 수심에 따라 격자 간격을 적절히 선택해야 하는데 수심이 복잡하게 변하는 경우 격자간격 조정이 불가능하여 분산효과를 정도 높게 고려할 수 없다. 이 문제점을 해결하기 위하여 윤성범 등(2004)은 파동방정식의 인위적인 분산항을 이용하여 Boussinesq 방정식의 분산효과를 고려할 수 있는 능동적인 분산보정기법을 제안하였고 Cho et al.(2007)는 일정한 수심에서 수치적인 분산오차가 Boussinesq 방정식의 물리적인 분산항을 대체하도록 수심, 격자 간격 및 계산 시간 간격 사이의 관계식을 유도하고 Boussinesq 방정식의 분산항과 일치하는 수치분산을 이용하여 실용적인 분산보정기법을 개발하였다. 이에 Ahn(2010)은 현재 컴퓨터의 계산 능력이 향상되어 선형 Boussinesq 방정식을 직접 차분하여 계산하는데 무리가 없다고 판단하여 선형 Boussinesq 방정식을 직접 차분한 모형을 개발하였다. 본 연구에서는 기존의 원해 지진해일 전파모의에 이용되어왔던 선형 천수방정식에 수치분산을 고려한 모형 대신 선형 Boussinesq 방정식의 유한차분 모형을 제안하였으며 기존의 선형 Boussinesq 방정식 모형의 격자와 수심간의 제약을 없애기 위해 차분 기법을 달리 한 2차 정확도의 유한차분 모형을 제안하였다. 검증을 위하여 선형 Boussinesq 방정식의 해석해(Carrier, 1991)와 비교하였다.

  • PDF

Hierarchical Modulation Scheme for 3D Stereoscopic Video Transmission Over Maritime Channel Environment (해양 채널 환경에서 3D 입체영상의 전송을 위한 계층변조 기법)

  • You, Dongho;Lee, Seong Ro;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1405-1412
    • /
    • 2015
  • Recently, Due to the rapid growth of broadcasting communication and video coding technologies, the demands for immersive media contents based on 3D stereoscopic video will increase steadily. And the demands must ultimately provide the contents for users which are in wireless channel such as vehicle, train, and ship. Thus, in this paper, we transmit the 3D stereoscopic video over the maritime Rician channel that direct wave is more dominant than reflective wave. Besides, we present unequel error protection (UEP) by applying hierarchical 4/16-QAM to V+D(Video plus Depth) format which can represent 3D stereoscopic video. We expect our system to provide seamless broadcasting service for users with poor reception condition.

A Plain on Operation Improvement according to the Analysis of Radio Field's Environment in Domestic Coastal (연안해역 전파환경의 분석과 운용개선 방안)

  • Yun, Jae-Jun;Kim, Byung-Ok;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1117-1124
    • /
    • 2005
  • The radio field environment is very different according to frequency band, therefore communication condition is equation that VHF is passed by direct radiation and HF is via reflect radiation in ionosphere. Load a ship according to the enforcement regulations of the ships safety act have specificated the radio equipment that should be operating. This paper have analysed by the simulation program about radio field environment for research the communications condition, which is VHF & HF band in domestic coastal. We have Predicted to radio field environment and communications condition using the data of analysis and domestic radio regulation regard to coast navigational ship. Therefore have proposed the necessity for rationally plan on improvement the radio regulation and network cooperation of VHF radio station.

  • PDF

Travel Time Calculation Using Mono-Chromatic Oneway Wave Equation (단일주파수 일방향파동방정식을 이용한 주시계산)

  • Shin, Chang-Soo;Shin, Sung-Ryul;Kim, Won-Sik;Ko, Seung-Won;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.4
    • /
    • pp.119-124
    • /
    • 2000
  • A new fast algorithm for travel time calculation using mono-chromatic one-way wave equation was developed based on the delta function and the logarithms of the single frequency wavefield in the frequency domain. We found an empirical relation between grid spacing and frequency by trial and error method such that we can minimize travel time error. In comparison with other methods, travel time contours obtained by solving eikonal equation and the wave front edge of the snapshot by the finite difference modeling solution agree with our algorithm. Compared to the other two methods, this algorithm computes travel time of directly transmitted wave. We demonstrated our algorithm on migration so that we obtained good section showing good agreement with original model. our results show that this new algorithm is a faster travel time calculation method of the directly transmitted wave for imaging the subsurface and the transmission tomography.

  • PDF

Cramér-Rao Lower Bound of Multipath Angle Estimation for Low-Flying Target of Dual-Frequency Airborne Radar (항공기 레이다에 있어 두 개의 주파수를 사용하였을 때 저고도 표적 다중경로 각도 추정의 CRLB)

  • Jung, Ji Hyun;Kim, Jinuk;Lee, Joohyun;Chun, Joohwan;Oh, Yougeun;Suh, Jinbae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.373-379
    • /
    • 2019
  • If two signals with the same single-tone frequency and differing phases impinge simultaneously on an antenna at slightly differing angles, then a large error in the angle estimation might occur if the phase difference is either $0^{\circ}$ or $180^{\circ}$. This phenomenon might arise with an airborne fire-control radar, which has a relatively small bandwidth, for a low-flying target over the sea or terrain surface. In this paper, we show that the $Cram{\acute{e}}r$-Rao lower bound for such a target can be significantly lowered with the use of two frequencies.

Refinement of Interpretation Method for Reliable Vs Profiling in Downhole Seismic Method (다운홀 시험에서 신뢰성 있는 전단파 속도 주상도 도출을 위한 해석 기법의 개선)

  • Bang, Eun-Seok;Kim, Dong-Soo;Yoon, Jong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.157-170
    • /
    • 2006
  • Downhole method is considered as giving a little unreliable Vs profile when the signal to noise ratio(S/N) is low and the travel time information is erroneous although it is economical and ease of operation. Direct method has been applied for obtaining adequate result in this case. But it is difficult to determine optimum result by using direct method which is subjective and considering straight ray path. Therefore, in this paper, Mean Refracted Ray Path Method(MRM) was proposed, which is automated and considering refracted ray path. Artificial travel time data adding some travel time error was generated by forward modeling based on Snell's Law and travel time data was also obtained from numerical signal traces using FEM modelling. Using these travel time data, reliability of MRM was verified in the manner of comparing the results determined by MRM with the model. Finally, proposed method was applied to the real field data and it was considered as improved method for obtaining the optimum result in downhole seismic method.

An Experimental and Numerical Study on the Survivability of a Long Pipe-Type Buoy Structure in Waves (긴 파이프로 이뤄진 세장형 부이 구조물의 파랑 중 생존성에 관한 모형시험 및 수치해석 연구)

  • Kwon, Yong-Ju;Nam, Bo-Woo;Kim, Nam-Woo;Park, In-Bo;Kim, Sea-Moon
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.427-436
    • /
    • 2018
  • In this study, experimental and numerical analysis were performed on the survivability of a long pipe-type buoy structure in waves. The buoy structure is an articulated tower consisting of an upper structure, buoyancy module, and gravity anchor with long pipes forming the base frame. A series of experiment were performed in the ocean engineering basin of KRISO with the scaled model of 1/ 22 to evaluate the survivability of the buoy structure at West Sea in South Korea. Survival condition was considered as the wave of 50 year return period. Additional experiments were performed to investigate the effects of current and wave period. The factors considered for the evaluation of the buoy's survival were the pitch angle of the structure, anchor reaction force, and the number of submergence of the upper structure. Numerical simulations were carried out with the OrcaFlex, the commercial program for the mooring analysis, with the aim of performing mutual validation with the experimental results. Based on the evaluation, the behavior characteristics of the buoy structure were first examined according to the tidal conditions. The changes were investigated for the pitch angle and anchor reaction force at HAT and LAT conditions, and the results directly compared with those obtained from numerical simulation. Secondly, the response characteristics of the buoy structure were studied depending on the wave period and the presence of current velocity. Third, the number of submergence through video analysis was compared with the simulation results in relation to the submergence of the upper structure. Finally, the simulation results for structural responses which were not directly measured in the experiment were presented, and the structural safety discussed in the survival waves. Through a series of survivability evaluation studies, the behavior characteristics of the buoy structure were examined in survival waves. The vulnerability and utility of the buoy structure were investigated through the sensitivity studies of waves, current, and tides.

Analysis on the Characteristics of the Infra-Gravity Waves inside and outside Pohang New Harbor using a Transfer Function Model (전달함수 모형을 이용한 포항신항 내·외의 외중력파 특성 분석)

  • Cho, Hong-Yeon;Jeong, Weon Mu;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.131-139
    • /
    • 2014
  • Infra-gravity waves (IGWs) with a period of 1~3 minutes are a factor that directly influences the motion analysis of moored ships inside a harbor and longshore sediment transport analysis. If significant levels of IGWs from far seas are transferred to a harbor and amplified, they may cause downtime of large ships and induce economic loss. In this study, transfer characteristics of the IGWs intruding from outside to inside Pohang New Harbor were analyzed using statistical analysis and transfer function of wave data measured at both outside and inside the harbor for around 5 years. Transfer characteristic analysis was limited to events where IGWs had wave heights above 0.1 m. The wave height distribution of inside the harbor was similar to that of outside the harbor, while the wave period variance of the former was larger than that of the latter. The parameters of the transfer function was optimally estimated according to each event. The estimated average RMS error of the wave height inside the harbor was around 0.013 m. The estimated parameters had a strong correlation with the linear combination information of IGW wave height, period, and direction (R = 0.95). The transfer function suggested in this study can quickly and easily estimate information on IGWs inside the harbor using IGW information predicted beforehand, and is expected to reduce damage due to unexpected restrictions on harbor usage.