• Title/Summary/Keyword: 직접메탄올 연료전지

Search Result 201, Processing Time 0.022 seconds

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

Current Patents and Papers Research Trend of Fuel Cell Membrane (특허 및 논문 게재 분석을 통한 연료전지용 전해질막의 연구동향)

  • Woo, Chang Hwa
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.407-420
    • /
    • 2016
  • The fuel cell technology as a green energy source has been actively studied to solve energy shortages and pollution problems. The generating efficiency of fuel cell is high because the electricity is directly produced by using hydrogen and oxygen and the additional power generator is not needed. The key technology is the manufacturing process of polymer electrolyte membranes for polymer electrolyte membrane fuel cell (PEMFC) system. The Nafion, perfluoro-based polymeric membrane is mainly used as a polymer electrolyte membrane. However, the Nafion is expensive and rapidly decreases the performance of Nafion at high temperature. So, many researchers are lively studying new alternative electrolyte membranes. In this review, through the technology competitiveness evaluation of patents and papers, the frequencies of presentation are filed by country, institution and company. In addition, polymer electrolyte membrane fuel cell, direct methanol fuel cell and alkaline fuel cell are also filed.

Effects of environmental temperature on the performance of direct methanol fuel cell for vehicles (외부온도가 수송용 메탄올연료전지 성능에 미치는 영향)

  • Han, Chang-Hwa;Jung, Dae-Seung;Choi, Ji-Sun;Han, Sang-Hun;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.176-179
    • /
    • 2009
  • The performance of direct methanol fuel cells is affected by operating conditions such as, methanol feeding temperatures, methanol concentrations, and methanol flow rates during the operation in different environmental conditions. In this study, effects of the environmental temperature on performance of direct methanol fuel cells have been investigated in order to test a applicability of direct methanol fuel cell to the vehicle. The environmental temperature (ET) was varied from $-20^{\circ}C$ to $+30^{\circ}C$. The inside fuel cell temperature (CT) during test at various operating conditions was monitored and the performance of fuel cell was measured in the I-V polarization curve. With increasing the ET, the performance of the fuel cell was significantly improved and the CT also almost linearly increased. However, at below $0^{\circ}C$ ET, the DMFC showed very poor performance and needed to control CT or methanol feeding temperature (MFT), methanol flow rate(MFR) to obtain enough power of the vehicle.

  • PDF

Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis (In Situ NMR 진단용 원통형 직접 메탄올 연료전지)

  • Joh, Han-Ik;Um, Myung-Sup;Han, Kee-Sung;Han, Oc-Hee;Ha, Heung-Yong;Kim, Soo-Kil
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • This study is to develop a fuel cell system applicable to an in situ NMR (Nuclear magnetic resonance) diagnosis. The in situ NMR can be used in real time monitoring of various reactions occurring in the fuel cell, such as oxidation of fuel, reduction of oxygen, transport phenomena, and component degradation. The fuel cell for this purpose is, however, to be operated in a specifically designed tubular shape toroid cavity detector (TCD), which constrains the fuel cell to have a tubular shape. This may cause difficulties in effective mass transport of reactants/products and uniform distribution of assembly pressure. Therefore, a new flow field designed in a particular way is necessary to enhance the mass transport in the tubular fuel cell. In this study, a tubular-shaped close-type flow field made of non-magnetic material is developed. With this flow field, oxygen is effectively delivered to the cathode surface and the produced water is readily removed from the membrane-electrode assembly to prevent flooding. The resulting DMFC (direct methanol fuel cell) outperforms the open-type flow field and exhibits $36\;mW/cm^2$ even at room temperature.