Browse > Article
http://dx.doi.org/10.5229/JKES.2009.12.4.329

Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis  

Joh, Han-Ik (Center for Fuel Cell Research, Korea Institute of Science and Technology)
Um, Myung-Sup (Center for Fuel Cell Research, Korea Institute of Science and Technology)
Han, Kee-Sung (Analysis Research Division Daegu Center, Korea Basic Science Institute)
Han, Oc-Hee (Analysis Research Division Daegu Center, Korea Basic Science Institute)
Ha, Heung-Yong (Center for Fuel Cell Research, Korea Institute of Science and Technology)
Kim, Soo-Kil (Center for Fuel Cell Research, Korea Institute of Science and Technology)
Publication Information
Journal of the Korean Electrochemical Society / v.12, no.4, 2009 , pp. 329-334 More about this Journal
Abstract
This study is to develop a fuel cell system applicable to an in situ NMR (Nuclear magnetic resonance) diagnosis. The in situ NMR can be used in real time monitoring of various reactions occurring in the fuel cell, such as oxidation of fuel, reduction of oxygen, transport phenomena, and component degradation. The fuel cell for this purpose is, however, to be operated in a specifically designed tubular shape toroid cavity detector (TCD), which constrains the fuel cell to have a tubular shape. This may cause difficulties in effective mass transport of reactants/products and uniform distribution of assembly pressure. Therefore, a new flow field designed in a particular way is necessary to enhance the mass transport in the tubular fuel cell. In this study, a tubular-shaped close-type flow field made of non-magnetic material is developed. With this flow field, oxygen is effectively delivered to the cathode surface and the produced water is readily removed from the membrane-electrode assembly to prevent flooding. The resulting DMFC (direct methanol fuel cell) outperforms the open-type flow field and exhibits $36\;mW/cm^2$ even at room temperature.
Keywords
DMFC; NMR; Flow field; In Situ analysis; Mass transport;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. E. Gerald II, R. J. Klinger, and J. W. Rathke, 'Flat metal conductor principal detector element for NMR analysis of a sample' US patent, 6469507 B1
2 K. -Y. Song, H. -K. Lee, and H. -T. Kim, 'MEA design for low water crossover in air-breathing DMFC' Electrochim. Acta, 53, 637 (2007)   DOI   ScienceOn
3 T. S. Zhao, R. Chen, W. W. Yang, and C. Xu, 'Small direct methanol fuel cells with passive supply of reactants' J. Power Sources, 191, 185 (2009)   DOI   ScienceOn
4 P. K. Babu, Y. Y. Tong, H. S. Kim, and A.Wieckowski, 'Nanostructured electrode surfaces studied by electrochemical NMR' J. Electroanl. Chem., 524, 157 (2002)   DOI   ScienceOn
5 Y. Paik, S. -S. Kim, and O. H. Han, 'Methanol Behavior in Direct Methanol Fuel Cells' Angew. Chem. Int. Ed., 47, 94 (2008)   DOI   ScienceOn
6 H. D. W. Hill, "Probe for High Resolution" in: Encyclopedia of NMR, D. M. Grant and R. K. Harris, eds., Wiley, New York (1996)
7 R. E. Gerald II, J. Sanchez, C. S. Johnson, R. J. Klinger, and J. W. Rathke, 'In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector' J. Phys.: Condens. Matter, 13, 8269 (2001)   DOI   ScienceOn
8 O. H. Han and K. S. Han, 'Toroidal Probe Unit for Nuclear Magnetic Resonance', US patent, 7339378 B2
9 D. K. Cheng, "Field and Wave Electromagnetics", 2nd ed., Addison-Wesley, New York (1989)
10 F.D. Doty, "Solid State Probe Design", in: Encyclopedia of NMR, D. M. Grant and R. K. Harris, eds., Wiley, New York (1996)
11 H. Tawfik, Y. Hung, and D. Mahajan, 'Metal bipolar plates for PEM fuel cell-review' J. Power Sources, 163, 755 (2007)   DOI   ScienceOn
12 S. Y. Hwang, H. -I. Joh, M. A. Scibioh, S. -Y. Lee, S. -K. Kim, T. G. Lee, and H. Y. Ha, 'Impact of cathode channel depth on performance of direct methanol fuel cell' J. Power Sources, 183, 226 (2008)   DOI   ScienceOn
13 B. Xiao, H. Bahrami, and A. Faghri, 'Analysis of heat and mass transport in a miniature passive and semi passive liquid feed direct methanol fuel cell (DMFC)' J. Power Sources, in press   DOI   ScienceOn
14 H. -I. Joh, T. J. Ha, S. Y. Hwang, J. -H Kim, S. -H. Chae, J. H. Cho, J. Prabhuram, S. -K. Kim, T. -H. Lim, B. -K. Cho, J. -H. Oh, S. H. Moon, and H. Y. Ha, 'A direct methanol fuel cell system to power a humanoid robot' J. Power Sources, 195, 293 (2010)   DOI   ScienceOn
15 J. Munk, P. A. Christensen, A. Hamnett, and E. Skou, 'The electrochemical oxidation of methanol on platinum and platinum + ruthenium particulate electrodes studied by in-situ FTIR spectroscopy and electrochemical mass spectrometry' J. Electroanal. Chem., 401, 215 (1996)   DOI   ScienceOn
16 D. Kim, J. Lee, T.-H. Lim, I.-H. Oh, and H.Y. Ha, 'Operational characteristics of a 50 W DMFC stack' J. Power Sources, 155, 203 (2006)   DOI   ScienceOn
17 S. -K. Kim, E. S. Lee, Y. -Y. Kim, J. M. Kim, H. -I. Joh, and H. Y. Ha, 'Position-dependent cathode degradation of large scale membrane electrode assembly for direct methanol fuel cell' J. Korean Electrochem. Soc., 12, 148 (2009)   과학기술학회마을   DOI   ScienceOn
18 J. -Y. Park, M. Aulice Scibioh, S. -K. Kim, H. -J. Kim, I. -H. Oh, T. G. Lee, and H. Y. Ha, 'Investigations of performance degradation and mitigation strategies in direct methanol fuel cells', Int. J. Hydrogen Energy, 34, 2043 (2009)   DOI   ScienceOn
19 J. -T. Li, Q. -S. Chen, and S. -G. Sun, 'In situ microscope FTIR studies of methanol adsorption and oxidation on an individually addressable array of nanostructured Pt microelectrodes' Electrochim. Acta, 52, 5725 (2007)   DOI   ScienceOn
20 F. Liu, M. Yan, W. Zhou, and Z. Jiang, 'In situ transmission difference FTIR spectroscopic investigation on anodic oxidation of methanol in aqueous solution' Electrochem. Comm., 5, 276 (2003)   DOI   ScienceOn