Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.407

Current Patents and Papers Research Trend of Fuel Cell Membrane  

Woo, Chang Hwa (Planning Center, Gyeongsang National University Academy and Industry Collaboration)
Publication Information
Membrane Journal / v.26, no.6, 2016 , pp. 407-420 More about this Journal
Abstract
The fuel cell technology as a green energy source has been actively studied to solve energy shortages and pollution problems. The generating efficiency of fuel cell is high because the electricity is directly produced by using hydrogen and oxygen and the additional power generator is not needed. The key technology is the manufacturing process of polymer electrolyte membranes for polymer electrolyte membrane fuel cell (PEMFC) system. The Nafion, perfluoro-based polymeric membrane is mainly used as a polymer electrolyte membrane. However, the Nafion is expensive and rapidly decreases the performance of Nafion at high temperature. So, many researchers are lively studying new alternative electrolyte membranes. In this review, through the technology competitiveness evaluation of patents and papers, the frequencies of presentation are filed by country, institution and company. In addition, polymer electrolyte membrane fuel cell, direct methanol fuel cell and alkaline fuel cell are also filed.
Keywords
fuel cell; membrane electrode assembly; polymer electrolyte membrane fuel cell; direct methanol fuel cell; alkaline fuel cell; patents;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 M. K. Jung and S. Y. Nam, "Reviews on preparation and membrane applications of polybenzimidazole polymers", Membr. J., 26, 253 (2016).   DOI
2 B. K. Park, S. H. Kong, Y. J. Kim, and S. Y. Nam, "Organic/inorganic hybrid electrolytes for the application of direct methanol fuel cell (DMFC) - Preparation and properties of sulfonated SEBS (SSEBS)-clay hybrid membranes -", Membr. J., 15, 165 (2005).
3 S. W. Yoon and D. H. Kim, "Preparation and characterization of PVA/PAM electrolyte membranes containing silica compound for direct methanol fuel cell application", Polymer(Korea), 34, 45 (2010).
4 J. H. Sauk and G. Shul, "Effect of crossover on the performance of direct methanol fuel cell(DMFC)", Chem. Eng. J., 37, 21 (1999).
5 B. S. Lee, S. K. Jung, and J. W. Rhim, "Preparation and characterization of the impregnation to porous membranes with PVA/PSSA-MA for fuel cell applications", Membr. J., 35, 296 (2011).
6 Y. M. Lee and H. B. Park, "Development of membrane materials for direct methanol fuel cell", Membr. J., 10, 103 (2000).
7 V. I. Matryonin, A. T. Ovchinikov, and A. P. Tzedilkin, "Investigation of the operating parameters influence on H2-O2 alkaline fuel cell performance", Int. J. Hydrogen Energy, 22, 1047 (1997).   DOI
8 B. Xing and O. Savadogo, "Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)", Electrochem. Commun., 2, 697 (2000).   DOI
9 D. J. Jones and J. Roziere, "Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications", J. Membr. Sci., 185, 41 (2001).   DOI
10 T. Burchardt, P. Gouerec, E. Sanchez-Cortezon, Z. Karichev, and J. H. Miners, "Alkaline fuel cells: Contemporary advancement and limitations", Fuel Cells, 81, 2151 (2002).
11 S. Y. No, G. Y. Jang, M. J. Kim, and J. W. Lee, "2009 National R&D patent performance survey, analysis report", pp. 109-110, KIPO, December (2009).
12 J. R. Varcoe and R. C. T. Slade, "Prospects for alkaline anion-exchange membranes in low temperature fuel cells", Fuel Cells, 5, 187 (2005).   DOI
13 B. Y. S. Lin, D. W. Kirk, and S. J. Thorpe, "Performance of alkaline fuel cells: a possible future energy system", J. Power Sources, 161, 474 (2006).   DOI
14 C. H. Woo, "Study on matrix module for predicting of emerging ICT technology", master degree Dissertation, Univ. of Hoseo, asan, Chungcheongnam-do (2014).
15 "Analysis of ICT technology competitiveness using quantitative information for 2015", pp. 11-15, IITP, December (2015).
16 "Development of core components and element technology for wearable smart device", pp. 232-233, KISPEP, January (2016).
17 J. Jeong, K. Yoon, J. K. Choi, Y. J. Kim, and Y. T. Hong, "Preparation and characterization of the $H_3PO_4$-doped sulfonated poly(arylether benzimidazole) membrane for polymer electrolyte membrane Fuel Cell", Membr. J., 16, 276 (2006).
18 M. S. Shin, G. H. Oh, and J. S. Park, "Preparation and characterizations of ferroxane-nafion composite membranes for PEMFC", J. Membr. Sci., 26, 135 (2016).   DOI
19 S. L. Chena, A. B. Bocarsly, and J. Benziger, "Nafion layered sulfonated polysulfone fuel cell membranes", J. Power Sources, 152, 27 (2005).   DOI
20 S. L. Chen, L. Krishnan, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells", J. Membr. Sci., 243, 327 (2004).   DOI
21 M. C. Yoo, B. J. Chang, J. H. Kim, S. B. Lee, and Y. T. Lee, "Sulfonated perfluorocycobutyl biphenylene polymer electrolyte membranes for fuel cells", Membr. J., 15, 355 (2005).
22 K. M. Nouela and P. S. Fedkiwa, "Nafion$^{(R)}$based composite polymer electrolyte membranes", Electrochem. Acta., 43, 2381 (1998).   DOI
23 J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 3 (2001).   DOI
24 O. Savadogo, "Emerging membranes for electro chemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications", J. Power Sources, 127, 135 (2004).   DOI
25 M. H. Chen, T. C. Chiao, and T. W. Tseng, "Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes", J. Appl. Polym. Sci., 61, 1205 (1996).   DOI
26 M. A. Jeong, D. H. Yu, M. J. Kho, J. W. Rhim, H. S. Byun, M. S. Seo, and S. Y. Nam, "Preperation and characterization of PVdF microporous membrane with additive for recharge battery", Membr. J., 18, 84 (2008).
27 D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, H. O. Too, J. M. Kim, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF-HFP microporous membranes for Li-ion rechargeable battery", Membr. J., 17, 359 (2007).
28 K. Ramya, G. Velayutham, C. K. Subramaniam, N. Rajalakshmi, and K. S. Dhathathreyan, "Effect of solvents on the characteristics of Nafion$^{(R)}$/PTFE composite membranes for fuel cell applications", J. Power Sources, 160, 10 (2006).   DOI
29 C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochim. Acta, 46, 2401 (2001).   DOI
30 J. Kerres, W. Cui, R. Disson, and W. Neubrand, "Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by disproportionation of sulfinic acid groups", J. Membr. Sci., 139, 211 (1998).   DOI
31 J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, "Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells", Solid State Ionics, 147, 189 (2002).   DOI
32 D. Y. Kim and J. T. Hwang, "Clean energy technology roadmap", pp. 22-68, KETEP, August (2016).
33 V. Ramani, H. R. Kunz, and J. M. Fenton, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., 232, 31 (2004).   DOI
34 D. Lu, W. Lu, C. Li, J. Liu, and J. Xu, "Proton conducting composite membranes derived from poly(2,6-dimethyl-1,4-phenylene oxide) doped with phosphosilicate gels", Solid State Ionics, 177, 1111 (2006).   DOI
35 J. Stephens, "Fuel processing for fuel cell power systems", Fuel cells Bulletins, 12, 6 (1996).
36 N. S. An, "Energy technology R&D warehouse: fuel cell", KETEP, October (2012).
37 J. Y. Park, J. K. Choi, K. J. Choi, T. S. Hwang, H. J. Kim, and Y. T. Hong, "Effects of mixed casting solvents on morphology and characteristics of sulfonated poly(aryl ether sulfone) membranes for DMFC applications", Membr. J., 18, 282 (2008).
38 O. Okada and K. Yokoyama, "Development of polymer electrolyte fuel cell cogeneration systems for residential applications", Fuel Cell, 1, 72 (2008).
39 D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
40 Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membrane for fuel cells operating above $100^{\circ}C$", Chem. Mater., 15, 4896 (2003).   DOI
41 K. Sundmacher and K. Scott, "Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapour-liquid-solid system", Chem. Eng. Sci., 54, 2927 (1999).   DOI
42 H. S. Shin, C. S. Lee, J. H. Jun, S. Y. Jung, J. W. Rhim, and S. Y. Nam, "Preparation and characterization of ion exchange membrane for direct methanol fuel cell (DMFC) suing sulfonated polysulfone", Membr. J., 12, 247 (2002).
43 B. Pivovar, "2011 Alkaline membrane fuel cell workshop final report" (2012).
44 F. Lufrano, G. Squadrito, A. Patti, and E. P. lacqua, "Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells", J. Appl. Polym. Sci., 77, 1250 (2000).   DOI
45 M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000).   DOI
46 T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, "Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl- 1,4-phenylene)", Solid State Ionics, 106, 219 (1998).   DOI
47 C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001).   DOI
48 K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001).   DOI