• Title/Summary/Keyword: 지화인식

Search Result 20, Processing Time 0.022 seconds

Study on Forearm Muscles and Electrode Placements for CNN based Korean Finger Number Gesture Recognition using sEMG Signals (표면근전도 신호를 활용한 CNN 기반 한국 지화숫자 인식을 위한 아래팔 근육과 전극 위치에 관한 연구)

  • Park, Jong-Jun;Kwon, Chun-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.260-267
    • /
    • 2018
  • Surface electromyography (sEMG) is mainly used as an on/off switch in the early stage of the study and was then expanded to navigational control of powered-wheelchairs and recognition of sign language or finger gestures. There are difficulties in communication between people who know and do not know sign language; therefore, many efforts have been made to recognize sign language or finger gestures. Recently, use of sEMG signals to recognize sign language signals have been investigated; however, most studies of this topic conducted to date have focused on Chinese finger number gestures. Since sign language and finger gestures vary among regions, Korean- and Chinese-finger number gestures differ from each other. Accordingly, the recognition performance of Korean finger number gestures based on sEMG signals can be severely degraded if the same muscles are specified as for Chinese finger number gestures. However, few studies of Korean finger number gestures based on sEMG signals have been conducted. Thus, this study was conducted to identify potential forearm muscles from which to collect sEMG signals for Korean finger number gestures. To accomplish this, six Korean finger number gestures from number zero to five were investigated to determine the usefulness of the proposed muscles and electrode placements by showing that CNN technique based on sEMG signal after sufficient learning recognizes six Korean finger number gestures in accuracy of 100%.

A Development of the Next-generation Interface System Based on the Finger Gesture Recognizing in Use of Image Process Techniques (영상처리를 이용한 지화인식 기반의 차세대 인터페이스 시스템 개발)

  • Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.935-942
    • /
    • 2011
  • This study aims to design and implement the finger gesture recognizing system that automatically recognizes finger gestures input through a camera and controls the computer. Common CCD cameras were redesigned as infrared light cameras to acquire the images. The recorded images go through the pre-process to find the hand features, the finger gestures are read accordingly, and an event takes place for the follow-up mouse controlling and presentation, and finally the way to control computers is suggested. The finger gesture recognizing system presented in this study has been verified as the next-generation interface to replace the mouse and keyboard for the future information-based units.

The Study for the Recognition System of Finger Languages (자화 인식 시스템에 관한 연구)

  • 강민지;최은숙;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.151-154
    • /
    • 2003
  • 본 논문에서는 흑백 CCD 카메라를 이용하여 청각 장애인의 의사전달 수단인 지화 동작을 동영상으로 입력받아 인식하여, 편집 가능한 텍스트 문서로 변환하는 시스템을 구현하였다. 일련의 입력 영상들 중에서 흐린 영상과 선명한 영상의 구분은 영상의 잔상을 이용하였고, 촬영된 연속 영상들의 배열로부터 문자 자소를 구하고, 오토마타를 적용하여 완성된 문자를 문서 편집기에 출력시켰다 획득된 선명한 영상 데이터 중 변화가 심한 손목 부분을 제거한 후, 최대 원형 이동법을 이용하여 손의 무게 중심점을 구하고, 원형 패턴 벡터 알고리즘을 적용하여 지화 해석에 필요한 손을 인식하였다. 손 중심으로부터 거리 스펙트럼을 이용하여 지화 인식에 사용되는 손 모양의 특징 벡터를 추출하고, 퍼지추론을 적용하여 표준 패턴과 입력 패턴의 특징벡터를 비교, 지화 동작을 인식하였다.

  • PDF

Optimize Data Glove-based System for Korean Finger Spelling Recognition (한글 지화 인식에 최적화된 데이터 글러브 시스템)

  • Min, Seung-Ki;Oh, Sang-Hyeok;Kim, Gyo-Ryeong;Yoon, Tae-Hyun;Lim, Chun-Gyu;Lee, Yun-Ii;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.237-241
    • /
    • 2007
  • 본 논문에서는 지화 인식에 최적화된 데이터 글러브 기반의 시스템을 제안한다. 제안된 데이터 글러브는 적은 수의 센서로 인식 속도의 향상을 기대할 수 있으며 한글의 지화 인식만을 위한 특수한 목적을 가지고 저렴하게 설계되었다. 그에 따라 한글의 지화를 사용한 많은 어플리케이션에 쉽게 적용할 수 있을 것이 기대된다. 2개의 틸트 센서는 손의 방향을 인식하고 5개의 플렉스 센서는 각 손가락의 구부러진 정도를 측정한다. 제안된 시스템에서는 k-means 알고리즘과 간단한 인덱싱 방식을 사용하여 한글의 기본적인 음소 24개를 인식하는 실험을 하였으며 인식율은 80.27% 에 이르렀다.

  • PDF

Hierarchical Hidden Markov Model for Finger Language Recognition (지화 인식을 위한 계층적 은닉 마코프 모델)

  • Kwon, Jae-Hong;Kim, Tae-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.77-85
    • /
    • 2015
  • The finger language is the part of the sign language, which is a language system that expresses vowels and consonants with hand gestures. Korean finger language has 31 gestures and each of them needs a lot of learning models for accurate recognition. If there exist mass learning models, it spends a lot of time to search. So a real-time awareness system concentrates on how to reduce search spaces. For solving these problems, this paper suggest a hierarchy HMM structure that reduces the exploration space effectively without decreasing recognition rate. The Korean finger language is divided into 3 categories according to the direction of a wrist, and a model can be searched within these categories. Pre-classification can discern a similar finger Korean language. And it makes a search space to be managed effectively. Therefore the proposed method can be applied on the real-time recognition system. Experimental results demonstrate that the proposed method can reduce the time about three times than general HMM recognition method.

Recognition of Finger-Language using FCM Algorithm (FCM 알고리즘을 이용한 지화 인식)

  • Song, Jun-Hwan;Kang, Hyo-Joo;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.353-358
    • /
    • 2008
  • 청각장애인들은 건청인에 비해 의사소통의 기회가 적어 원만한 상호관계를 유지하는데 어려움이 있다. 이러한 문제는 청각장애인들이 구화를 대신해 몸짓이나 손짓을 이용하여 의사를 전달하는 수화를 건청인들이 대부분 습득하고 있지 않아 청각장애인들과 의사소통이 거의 불가능 한 것이 현실이다. 따라서 본 논문에서는 건청인과 청각장애인들 간의 의사소통을 가능하게 하기 위한 전단계로 FCM 알고리즘을 이용한 지화 인식 방법을 제안한다. 제안된 방법은 화상 카메라를 통해 얻어진 영상에서 YCbCr 컬러 공간과 HSI 컬러 공간을 이용하여 피부영역을 검출한 후 추출된 피부영역을 4 방향 윤곽선 추적 알고리즘을 적용하여 두 손의 위치를 추적한다. 그리고 추적한 두 손의 영역에 대해 형태학적 정보를 이용하여 잡음을 제거한 후, 최종적으로 두 손의 영역을 추출한다. 추출된 손의 영역은 FCM 알고리즘을 적용하여 지화의 특징들을 분류하고 인식한다. 제안된 방법의 성능을 평가하기 위해 화상카메라에서 획득한 지화 영상을 대상으로 실험한 결과, 두 손 영역의 추출과 지화 인식에 있어서 효과적인 것을 확인하였다.

  • PDF

The Study on Dynamic Images Processing for Finger Languages (지화 인식을 위한 동영상 처리에 관한 연구)

  • Kang, Min-Ji;Choi, Eun-Sook;Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, we realized a system that receives the dynamic images of finger languages, which is the method of intention transmission of the hearing disabled person, using the white and black CCD camera, and that recognizes the images and converts them to the editable text document. We use the afterimage to draw a sharp line between indistinct images and clear images from a series of inputted images, and get the character alphabet from the away of continuous images and output the accomplished character to the word editor by applying the automata theory. After the system removes the varied wrist part from the data of clean image, it gets the controid point of hand by the maximum circular movement method and recognizes the hand that is necessary to analyze the finger languages by applying the circular pattern vector algorithm. The system abstracts the characteristic vectors of the hand using the distance spectrum from the center of the hand and it compares the characteristic vector of inputted pattern from the standard pattern by applying the fuzzy inference and recognizes the movement of finger languages.

Fingerspelling Teaching Program using Depth Information (깊이정보 기반 지화 학습 프로그램)

  • Lee, Ka-young;Kim, Dong-hyeon;Kim, Ji-on;Shin, Byeong-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.13-14
    • /
    • 2019
  • 이 논문에서는 깊이 카메라(depth camera)로 부터 획득한 깊이 영상을 분석하여 지화를 인식하는 기술을 개발하고 이를 이용한 지화 교육 프로그램의 구현 사례를 소개한다. 먼저 손의 16 개의 특징점을 뽑아내고, 어떤 지화인지 분류한다. 타자 연습 프로그램처럼 단어를 제시하고 그에 맞는 지화를 올바르게 표현하였는지를 검사함으로써 사용자가 지화를 학습할 수 있도록 도와주는 프로그램이다.

A Study on Finger Language Translation System using Machine Learning and Leap Motion (머신러닝과 립 모션을 활용한 지화 번역 시스템 구현에 관한 연구)

  • Son, Da Eun;Go, Hyeong Min;Shin, Haeng yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.552-554
    • /
    • 2019
  • Deaf mutism (a hearing-impaired person and speech disorders) communicates using sign language. There are difficulties in communicating by voice. However, sign language can only be limited in communicating with people who know sign language because everyone doesn't use sign language when they communicate. In this paper, a finger language translation system is proposed and implemented as a means for the disabled and the non-disabled to communicate without difficulty. The proposed algorithm recognizes the finger language data by leap motion and self-learns the data using machine learning technology to increase recognition rate. We show performance improvement from the simulation results.

Recognition of Finger Language Using FCM Algorithm (FCM 알고리즘을 이용한 지화 인식)

  • Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1101-1106
    • /
    • 2008
  • People who have hearing difficulties suffer from satisfactory mutual interaction with normal people because there are little chances of communicating each other. It is caused by rare communication of people who have hearing difficulties with normal people because majority of normal people can not understand sing language that is represented by gestures and is used by people who have hearing difficulties as a principal way of communication. In this paper, we propose a recognition method of finger language using FCM algorithm in order to be possible of communication of people who have hearing difficulties with normal people. In the proposed method, skin regions are extracted from images acquired by a camera using YCbCr and HSI color spaces and then locations of two hands are traced by applying 4-directional edge tracking algorithm on the extracted skin lesions. Final hand regions are extracted from the traced hand regions by noise removal using morphological information. The extracted final hand regions are classified and recognized by FCM algorithm. In the experiment using images of finger language acquired by a camera, we verified that the proposed method have the effect of extracting two hand regions and recognizing finger language.