• Title/Summary/Keyword: 지형 정보

Search Result 2,946, Processing Time 0.024 seconds

Solution Approaches to Multiple Viewpoint Problems: Comparative Analysis using Topographic Features (다중가시점 문제해결을 위한 접근방법: 지형요소를 이용한 비교 분석을 중심으로)

  • Kim, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.84-95
    • /
    • 2005
  • This paper presents solution heuristics to solving optimal multiple-viewpoint location problems that are based on topographic features. The visibility problem is to maximise the viewshed area for a set of viewpoints on digital elevation models (DEM). For this analysis, five areas are selected, and fundamental topographic features (peak, pass, and pit) are extracted from the DEMs of the study areas. To solve the visibility problem, at first, solution approaches based on the characteristics of the topographic features are explored, and then, a benchmark test is undertaken that solution performances of the solution methods, such as computing times, and visible area sizes, are compared with the performances of traditional spatial heuristics. The feasibility of the solution methods, then, are discussed with the benchmark test results. From the analysis, this paper can conclude that fundamental topographic features based solution methods suggest a new sight of visibility analysis approach which did not discuss in traditional algorithmic approaches. Finally, further research avenues are suggested such as exploring more sophisticated selection process of topographic features related to visibility analysis, exploiting systematic methods to extract topographic features, and robust spatial analytical techniques and optimization techniques that enable to use the topographic features effectively.

  • PDF

Effective Decision of the Route Alignment with Digital Terrain (수치지형모형을 이용한 효율적인 노선결정)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Lee, Hyung-Seok;Lee, Sung-Soong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.195-203
    • /
    • 1996
  • The 3-D analysis of terrain for route design and selection is being used as important basic data for effective judgement of political draft. This study is to decide efficient alignment of the entry route and design bridge by modeling, analyzing and displaying surface with digital terrain data. In this study we analyze slope, aspect, shaded-relief, line of sight and watershed on the base of DTM such as contour, TIN and grid. And we can not only esti mate end-area volume for road construction by calculating cut and fill and displaying mass-curve but also recognize the scene after execution with simulation of road and terrain. The result of this study reveals that visual effects of the 3-D terrain data are very effective for designer and decisionmaker to select and review alternative route with regard to terrain characteristics.

  • PDF

Estimating Method of Topographic Factor of Design Wind Speed Using GIS (GIS를 이용한 지형에 의한 풍속할증계수 산정 방법)

  • Choi, Se-Hyu;Seo, Eun-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.126-135
    • /
    • 2013
  • With more than 70% of the country consisting of mountains, Korea has large and small mountains, and hills located in the inner cities. Therefore, Korea's architectural structure laws stipulate that an increase in wind speed due to the influence of terrain should be considered in the design of wind loads of buildings. But if more than two mountains are located around the building or if the boundaries of the land surface are not clear when calculating topographic factors of wind speed, the designer has subjectively selected the coverage of the topographic factors of wind speed or the surface. This may lead to unscientific design of wind loads. This study attempts to analyze topographic factors of wind speed by using a 1:5000 topographic map with relatively high location accuracy and thereby to reflect changes due to the topographic characteristics and influence at the point where the building is located. By also selecting terrain surfaces and vertexes through Arc GIS and presenting a scientific approach to determine the range of topographic factors of wind speed, this study is expected to make a contribution for more rational and cost-effective wind-resistant design of buildings.

Insolation Modeling using Climate and Geo-Spatial Elements (기후요소와 지형 공간요소를 이용한 일사량 모델링)

  • Kim, Byung-Woo;Kang, In-Joon;Han, Ki-Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.79-86
    • /
    • 2010
  • This research is a thing about reverse operation about the solar power for location decision and increasing efficiency of the solar power generation equipments. The purpose of this research is reverse operation about the amount of sunshine using the climate and spatial elements. Following the result of correlation analysis, the wind-speed and cloud-amount factor are excluded, because the correlation and significance coefficients are out of value. Each outcome of regression analysis using the other four climate elements, and regression analysis using spatial elements is what the amount of sunshine and the solar altitude are the most influence to the insolation-modeling. Doing the regression analysis based on the precedent result make the result that climate elements have bigger coefficient of regression than spatial elements. This outcome means the climate elements are more influence than spatial elements.

A Study on the Terrain Interpolation Using Fractal Method (프랙탈 기법을 이용한 지형 보간에 관한 연구)

  • Kwon, Kee Wook;Lee, Jong Dal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.895-907
    • /
    • 2006
  • In this study, in order to maximize the accuracy and efficiency of the existing interpolation method fractal methods are applied. Developed FEDISA model revives the irregularity of the real terrain with only a few information about base terrain, which can produce almost complete geographic information. The area of the model is set to $150m{\times}150m$, $300m{\times}300m$, $600m{\times}600m$, $1,200m{\times}1,200m$ to compare the real data with the data of the existing interpolation method and FEDISA model. By statistical verification of the results, the adaptability and efficiency of FEDISA model are investigated. It seems that FEDISA model will help a lot to obtain the terrain information about the changed terrain, such as the bottom of reservoirs and dams as well as large amount of destruction due to cutting and banking.

Analysis of Overlay Accuracy in Digital Topographic Map and Cadastral Information Using Ortho Image map (정사투영 영상지도에 의한 수치지형도와 지적정보의 중첩정확도 분석)

  • Kang, Joon-Mook;Choi, Jong-Hyun;Kang, Young-Mi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.57-68
    • /
    • 1999
  • In case of topographic information construction it is most important as basemap determines the success or failure of GIS It is argument that digitizing works of basemap are divided by NGIS and PBLIS. So, it have to accompany the combination and application of cadastral information for constructing a usful basemap. In this study, we generated ortho image map using 1:5,000 aerial-photography image, present the comparative analysis for the overlay accuracy and map revision of topographic and cadastral information using ortho image map to base map. So, we present application schemes for land use, environment, and city planning field as well as union database by overlaying of image map and cadastral information.

  • PDF

Comparative Performance Analysis of Feature Detection and Matching Methods for Lunar Terrain Images (달 지형 영상에서 특징점 검출 및 정합 기법의 성능 비교 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.437-444
    • /
    • 2020
  • A lunar rover's optical camera is used to provide navigation and terrain information in an exploration zone. However, due to the scant presence of atmosphere, the Moon has homogeneous terrain with dark soil. Also, in extreme environments, the rover has limited data storage with low computation capability. Thus, for successful exploration, it is required to examine feature detection and matching methods which are robust to lunar terrain and environmental characteristics. In this research, SIFT, SURF, BRISK, ORB, and AKAZE are comparatively analyzed with lunar terrain images from a lunar rover. Experimental results show that SIFT and AKAZE are most robust for lunar terrain characteristics. AKAZE detects less quantity of feature points than SIFT, but feature points are detected and matched with high precision and the least computational cost. AKAZE is adequate for fast and accurate navigation information. Although SIFT has the highest computational cost, the largest quantity of feature points are stably detected and matched. The rover periodically sends terrain images to Earth. Thus, SIFT is suitable for global 3D terrain map construction in that a large amount of terrain images can be processed on Earth. Study results are expected to provide a guideline to utilize feature detection and matching methods for future lunar exploration rovers.

Comparative Study of GDPA and Hough Transformation for Linear Feature Extraction using Space-borne Imagery (위성 영상정보를 이용한 선형 지형지물 추출에서의 GDPA와 Hough 변환 처리결과 비교연구)

  • Lee Kiwon;Ryu Hee-Young;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.261-274
    • /
    • 2004
  • The feature extraction using remotely sensed imagery has been recognized one of the important tasks in remote sensing applications. As the high-resolution imagery are widely used to the engineering purposes, need of more accurate feature information also is increasing. Especially, in case of the automatic extraction of linear feature such as road using mid or low-resolution imagery, several techniques was developed and applied in the mean time. But quantitatively comparative analysis of techniques and case studies for high-resolution imagery is rare. In this study, we implemented a computer program to perform and compare GDPA (Gradient Direction Profile Analysis) algorithm and Hough transformation. Also the results of applying two techniques to some images were compared with road centerline layers and boundary layers of digital map and presented. For quantitative comparison, the ranking method using commission error and omission error was used. As results, Hough transform had high accuracy over 20% on the average. As for execution speed, GDPA shows main advantage over Hough transform. But the accuracy was not remarkable difference between GDPA and Hough transform, when the noise removal was app]ied to the result of GDPA. In conclusion, it is expected that GDPA have more advantage than Hough transform in the application side.

Development of the Topography Restoration Method for Debris Flow Area Using Airborne LiDAR Data (항공 라이다 자료를 이용한 토석류 발생지역의 지형복원기법 개발)

  • Woo, Choong-Shik;Youn, Ho-Joong;Lee, Chang-Woo;Lee, Kyu-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.174-187
    • /
    • 2011
  • The flowed soil is able to be estimated from topographic data of before and after the debris flow. However, it is often difficult to obtain airborne LiDAR data before the debris flow area. Thus, this study tries to develop a topographic restoration method that can provide spatial distribution of flowed soil and reconstruct the topography before the debris flow using airborne LiDAR data. The topographic restoration method can express a numerical formula induced from a Gaussian mixture model after extracting the cross sections of linear or non-linear in debris flowed area. The topographic restoration method was verified by two ways using airborne LiDAR data of before and after the debris flow. First, each cross section extracted from the debris flow sites to restore the topography was compared with airborne LiDAR data of before the debris flow. Also, the topographic data produced after the topographic restoration method applied to the debris flow sites was verified by airborne LiDAR DEM. Verifying the results of the topographic restoration method, overall fitting accuracy showed high accuracy close to 0.5m.

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.