• Title/Summary/Keyword: 지형학적차수

Search Result 35, Processing Time 0.022 seconds

Optimal Parameters Estimation of Diffusion-Analogy Geomorphologic Instantaneous Unit Hydrograph Model (확산-유추 지형학적 순간단위도 모형의 최적매개변수 추정)

  • Kim, Joo-Cheol;Choi, Yong-Joon
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.385-394
    • /
    • 2011
  • In this study, optimal parameters of diffusion-analogy GIUH were calculated by separating channel and hillslope from drainage structures in the basin. Parameters of the model were composed of channel and hillslope, each velocity($u_c$, $u_h$) and diffusion coefficient($D_c$, $D_h$). Tanbu subwatershed in Bocheong river basin as a target basin was classified as 4th rivers by Strahler's ordering scheme. The optimization technique was applied to the SCE-UA, the estimated optimal parameters are as follows. $u_c$ : 0.589 m/s, $u_h$ : 0.021 m/s, $D_c$ : $34.469m^2/s$, $D_h$ : $0.1333m^2/s$. As a verification for the estimated parameters, the error of average peak flow was about 11 % and the error of peaktime was 0.3 hr. By examining the variability of parameters, the channel diffusion coefficient didn't have significant effect on hydrological response function. by considering these results, the model is expected to be simplified in the future.

Determining the Flash Flood Warning Trigger Rainfall using GIS (GIS를 활용한 돌발홍수 기준우량 결정)

  • Hwang, Chang-Sup;Jun, Kye-Won;Yeon, In-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.78-88
    • /
    • 2006
  • This paper is to apply Geographical Information System (GIS) supported Geomorphoclimatic Instantaneous Unit Hydrograph (GCIUH) approach for the calculated flash flood trigger rainfall of the mountainous area. GIS techniques was applied in geography data construction such as average slope, drainage area, channel characteristics. Especially, decided stream order using GIS at stream order decision that is important for input variable of GCIUH. We compared the GCIUH peak discharge with the existing report using the design storm at Chundong basin($14.58km^2$). The results showed that derived the GCIUH was a very proper method in the calculation of mountaunous discharge. At the Chundong basin, flash flood trigger rainfall was 12.57mm in the first 20 minutes when the threshold discharge was $11.42m^3/sec$.

  • PDF

Runoff Analysis by the Geomorphoclimatic Linear Reservoir Model (지형기후학적 선형저수지 모델에 의한 유출해석)

  • 조홍제
    • Water for future
    • /
    • v.18 no.2
    • /
    • pp.143-152
    • /
    • 1985
  • A method is suggested for the reappearance of a surface runoff hudorgraph of a river basin by linking the hydrologic response of a catchment represented by the instantaneous unit hydrograph(IUH) with the Horton's empirical gemorphologic laws. The geomorphologic theory of the IUH developed by G. Itrube et al. and the geomorphoclimatic theory of the IUH developed by Bras et al. are used to derive the new hydrologic response function in consideration of geomorphologic parameters and climatic characteristics by applying to Sukekawa's rainfall-runoff model. The derived response function was tested for on some observed hydrographs in a natural watershed and showed promising, and by considering a drainage basin as m(1∼4) identical linear reservoir in series, it was founded that the model(m=2) is most applicable to predict hydrologic response regardless of the size of basins. A modelization algorithm of a basin using Sthahler's ordering scheme of drainage network will give good result in analysis of the surface runoff huydrograph by the method of this study.

  • PDF

Charateristics of Morphological Lineament in Woongcheon River-basin and its Morphotectonic Significance (웅천천 유역에 나타나는 지형선구조의 구조지형학적 특성)

  • MIN, Seok-Gyu;KEE, Keun-Doh
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.261-270
    • /
    • 2011
  • This study is to describe morphological linear anomalies manifested in the geomorphological landscapes of Woongcheon river-basin, situated in the western ends of Charyong Mountainous Range, and to elucidate their morphotectonic significance. The order of decreasing valley scale in the study area is NE-SW, NNE-SSW, NNW-SSE, N-S, and E-W series. The valleys of NE-SW lineament appear as the largest in the study area, having piedmont slope, terraces, low-relif hills. NNE-SSW lineament cross obliquely the geomorphological elements of the precedent lineament. NNW-SSE, N-S and E-W lineament cut the forms of higher orders showing NE-SW and NNE-SSW lineament. Scale of the linear valleys is not correlated with the order of streams. It is paradoxal that great valleys are not associated with the rivers of highest order. It owes to adaption of regional discharge system along the valleys exploiting the fracture resulted from succeeding tectonic accidents.

A Classification of Mountains in the Southern Part of Korean Peninsula based on the Mountain Ordering (산지 차수에 근거한 남한지역의 산지 구분)

  • JIN, Qiuhong;SON, ILL
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • The technique of mountain ordering developed by Yamada(1999) has been tested to two small islands (Namhaedo: 301km2, Geojedo: 378km2). The results and experiences above were extended and applied to the whole area of the southern part of Korean Peninsula. Three areas such as Seorak-Taebaek Mountains, Jiri-Deogyu Mountains, and Youngnam Alps are identified as the highest, 5th order mountains. 10 areas are classified as the 4th order and 87 areas as the 3rd order. It is suggested that the 5th order mountains are related to the axis of uplift and the 4th and 3rd order mountains have the same direction (NE-SW) as that of the secondary mountain systems in the Korean Peninsula. The logarithmic values of number, area, and relative altitude of the ordered mountains have the linear relationship with the order, as the laws of stream order. The several mountains which are not included in the existing mountain systems could be identified among the ordered mountains, and those mountains could be used as the basis to understand the geological structure of the Korean Peninsula. Most of the National Parks and the Provincial Parks are distributed on the 3rd, 4th, 5th order mountains. It is especially confirmed that the Songnisan National Park take a role to link the Seorak-Taebaek Mountains and Jiri-Deogyu Mountains as a important ecological axis. Therefore, it would be validated that the technique of mountain ordering has the practical values as well as the geomorphological significances.

A Linear Analysis of the Relation between Rainfall and Runoff for Peak Flow based on Geomorphologic IUH (지형학적(地形學的) 순간단위도(瞬間單位圖)에 의한 첨두유량(尖頭流量)의 강우(降雨)-유출(流出) 선형해석(線形解析))

  • Lee, Jung Sik;Kim, Jae Han;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.55-64
    • /
    • 1987
  • The schemes synthesizing the instantaneous unit hydrograph(IUH) are presented by using the geomorphologic parameters of a basin. To this end, the channels in the network are numbered according to the Strahler scheme, and the mathematical formulation corresponding to a dynamic probability theory for deriving the geomorphologic IUH(GUH) is refered to the existing techniques adopted by Rodriguez-Iturbe and Valdes. Also, the mean runoff velocity is applied for expressing a dynamic state of flow. The applicability of the GUH to the real drainage basins is tested by using the data observed in a few basins with areas of the order of 9.2, 20, 33.63, and $109.73km^2$ in Korea. The test is carried out by checking the discrepancies between the observed and simulated values for the peak discharge and its time of occurrence which are the most important parameters of an IUH by varing the mean runoff velocity and the inputs. As a result, good agreement is found between them, and it is shown that the variability in peak discharge of hydrograph depends on the mean runoff velocity more than the constant loss rate.

  • PDF

A Study on the Analysis of Hydrologic Similarity of the Catchment Response(I) (유역응답의 수문학적 상사성해석에 관한 연구(I))

  • 조홍제;이상배
    • Water for future
    • /
    • v.23 no.4
    • /
    • pp.421-434
    • /
    • 1990
  • The problems of hydrologic similarity among river basins was analyzed by a geomorphologic response model using Hortons*s ordering scheme. The Nash model was used for deriving the geomorphologic response function, and for the optimization of the responsefunction, imcomplete gamma function andRosso*s regression equation were used. The application of this method was tested on some observed flood data of Pyungchang river basin and Wi Stream basin and Bocheong stream, and predictions of hydrologic response were compared with that of the Moment method. The results show that the proposed model and dimensionless instantaneous unit hydrograph can be used for the runoff analysis of an ungauged basin and the analysis of hydrologic similarity.

  • PDF

A Study on Rainfall-Runoff Analysis by Geomorphological Instantaneous Unit Hydrograph (GIUH) (지형학적 순간단위도(GIUH)에 의한 강우-유출해석)

  • Choi, Hung-Sik;Park, Chung-Soo;Moon, Hyung-Geun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.49-58
    • /
    • 2006
  • Rainfall-runoff characteristics are analysed based on the geomorphological instantaneous unit hydrograph(GIUH) derived by geomorphological parameters using geographical information system in watershed ungaged or deficient of field data. Observed data of Seom river experiment watershed at upstream of Hoengseong dam and variable slope method for hydrograph separating of direct non are used. The 4th stream order of Seom river experimental watershed is developed with a regular correlation referred to the Horton-Strahler's law of stream order. The characteristic velocity to determine shape parameter of GIUH is 1.0m/s and its equation is modified for accurate results. Hydrograph at the outlet of 4th stream order of Maeil gage station and at the outlets of 3rd stream order of Sogun and Nonggeori gage stations show a little differences in falling limb of hydrograph but agree well to the observed data in general. The results by hydrological routing with HEC-HMS to the outlet of 4th stream order of Maeil gage station which the hydrograph by GIUH obtained at Sogun and Nonggeori gage stations of 3rd stream oder are applied as upstream inputs give better agreement with observed data than those by hydrograph by GIUH obtained at Maeil gage station of 4th stream order. In general, the rainfall-runoff by GIUH has applicability to the watershed routing of ungaged project regions.

A Study on Stream Morphologic and Hydraulic Characteristics of Wonju Stream (원주천의 하천형태학적 및 수리학적 특성연구)

  • Choe, Hong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.75-82
    • /
    • 1997
  • The stream morphologic characteristics of Wonju stream with small watershed are developed with a regular correlation referred to the Horton-Strahler's lows of stream order. Using Manning's formula and the discharges simulated by NWS-PC rainfallrunoff model that has been applied to the adjacent basin for model calibration and verification, the hydraulic characteristics at Wonju bridge are investigated. The peak discharge and the time to peak of unit hydrograph are analyzed by the calculated geomorphologic parameters. Rather primitive as this study is, these results are provided to be used for geomorphologic instantaneous unit hydropraph of ungaged basins including this study area. Through the reestablishment of rating curve and hydrograph with continuous field observations, the hydrologic and hydraulic characteristics of Wonju stream must be presented.

  • PDF

The Analysis of Basin Parameters Using Digital Map (수치지도를 이용한 유역특성분석)

  • Kang, In-Joon;Choi, Hyun;Lee, Byung-Gul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.229-236
    • /
    • 2001
  • One of the basic tasks in hydrological analysis is to delineate drainage basins and channel networks. Characteristics of channel networks and drainage basin parameters have been used widely in hydrologic calculation and modeling. DEMs(Digital Elevation Models) are generally used to automatically map the channel networks and to delineate drainage basins. This paper presents an effort to analyze basin characteristics using various DEMs. The quantitative analysis of channel networks begins with Horton's method of classifying stream according to Horton orders in hydro-geomorphy. HGSIS(Hydro-Geo-Spatial Information System) is possible to extract parameters. Usually, hydrologists. surveyors and GSIS researchers have some difficulties in accessing satellite images and in extracting DEMs from them. Therefore, the extracted DEMs from contours of digital map is widely used to have the basic works of hydrological analysis. This study presents proper DEMs to calculate Horton's orders, width function, drainage area, main channel length, total channel length, basin elevation and basin slope at digital map of 1:25,000 scale.

  • PDF