• Title/Summary/Keyword: 지형지수

Search Result 438, Processing Time 0.032 seconds

Assessing and Mapping the Aesthetic Value of Bukhansan National Park Using Geotagged Images (지오태그 이미지를 활용한 북한산국립공원의 경관미 평가 및 맵핑)

  • Kim, Jee-Young;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.4
    • /
    • pp.64-73
    • /
    • 2021
  • The purpose of this study is to present a method to assess the landscape aesthetic value of Bukhansan National Park using geotagged images that have been shared on social media sites. The method presented in this study consisted mainly of collecting geotagged image data, identifying landscape images, and analyzing the cumulative visibility by applying a target probability index. Ramblr is an application that supports outdoor activities with many users in Korea, from which a total of 110,954 geotagged images for Bukhansan National Park were collected and used to assess the landscape aesthetics. The collected geotagged images were interpreted using the Google Vision API, and were subsequently were divided into 11 landscape image types and 9 non-landscape image types through cluster analysis. As a result of analyzing the landscape types of Bukhansan National Park based on the extracted landscape images, landscape types related to topographical characteristics, such as peaks and mountain ranges, accounted for the largest portion, and forest landscapes, foliage landscapes, and waterscapes were also commonly found as major landscape types. In the derived landscape aesthetic value map, the higher the elevation and slope, the higher the overall landscape aesthetic value, according to the proportion and characteristics of these major landscape types. However, high landscape aesthetic values were also confirmed in some areas of lowlands with gentle slopes. In addition, the Bukhansan area was evaluated to have higher landscape aesthetics than the Dobongsan area. Despite the high elevation and slope, the Dobongsan area had a relatively low landscape aesthetic value. This shows that the aesthetic value of the landscape is strongly related not only to the physical environment but also to the recreational activities of visitors who are viewing the scenery. In this way, the landscape aesthetics assessment using the cumulative visibility of geotagged images is expected to be useful for planning and managing the landscape of Bukhansan National Park in the future, through allowing the geographical understanding of the landscape values based on people's perceptions and the identification of the regional deviations.

Identification of Bird Community Characteristics by Habitat Environment of Jeongmaek Using Self-organizing Map - Case Stuty Area Geumnamhonam and Honam, Hannamgeumbuk and Geumbuk, Naknam Jeongmaek, South Korea - (자기조직화지도를 활용한 정맥의 서식지 환경에 따른 조류 군집 특성 파악 - 금남호남 및 호남정맥, 한남금북 및 금북정맥, 낙남정맥을 대상으로 -)

  • Hwang, Jong-Kyeong;Kang, Te-han;Han, Seung-Woo;Cho, Hae-Jin;Nam, Hyung-Kyu;Kim, Su-Jin;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • This study was conducted to provide basic data for habitat management and preservation of Jeongmaek. A total of 18 priority research areas were selected with consideration to terrain and habitat environment, and 54 fixed plots were selected for three types of habits: development, valley, and forest road and ridge. The survey was conducted in each season (May, August, and October), excluding the winter season, from 2016 to 2018. The distribution analysis of birds observed in each habitat type using a self-organizing map (SOM) classified them into a total of four groups (MRPP, A=0.12, and p <0.005). The comparative analysis of the number of species, the number of individuals, and the species diversity index for each SOM group showed that they were all the highest in group III (Kruskal-Wallis, the number species: x2 = 13.436, P <0.005; the number of individuals: x2 = 8.229, P <0.05; the species diversity index: x2 = 17.115, P <0.005). Moreover, the analysis by applying the land cover map to the random forest model to examine the index species of each group and identify the characteristics of the habitat environment showed a difference in the ratio of the habitat environment and the indicator species among the four groups. The index species analysis identified a total of 18 bird species as the indicator species in three groups except for group II. When applying the random forest model and indicator species analysis to the results of classification into four groups using the SOM, the composition of the indicator species by the group showed a correlation with the habitat characteristics of each group. Moreover, the distribution patterns and densities of observed species were clearly distinguished according to the dominant habitat for each group. The results of the analysis that applied the SOM, indicator species, and random forest model together can derive useful results for the characterization of bird habitats according to the habitat environment.

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012 (MEGAN을 이용한 국내 BVOCs 배출량 산정: 2012년 6월 사례 연구)

  • Kim, Kyeongsu;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.48-61
    • /
    • 2022
  • South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.

Studies on the Morphological, Physical and Chemical Properties of the Korean Forest soil in Relation to the Growth of Korean White Pine and Japanese Larch (한국산림토양의 형태학적 및 이화학적성질과 낙엽송, 잣나무의 성장(成長)에 관한 연구(硏究))

  • Chung, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.189-213
    • /
    • 1980
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in accordance with multi-variate analysis. 2. Test species, larch and the Korean white pine, are plantable in extensive areas from mid to north in the temperate zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are not known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth. But, when larch is planted in the Korean white pine site it can be hardly said that the larch growth is good. To understand on such a difference soil factors have been studied so as to see how the soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 larch plots and 259 white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analysis of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/chemical properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of deposit form, soil depth, soil moisture, altitude, relief, soil type, depth of A-horizon, soil consistency content of organic matter soil texture bed rock gravel content aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency bed rock aspect depth of A-horizon soil moisture altitude relief deposit form soil depth soil texture gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of base saturation organic matter CaO C/N ratio, effective $P_2O_5$ PH.exchangeable $K_2O$ T-N MgO C E C Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$ Total Base T-N Na C/N ratio PH CaO base saturation organic matter exchangeable $K_2O$ C E C and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that larch growth is influenced by the following factors in the order of soil depth deposit form soil moisture PH relief soil type altitude T-N soil consistency effective $P_2O_5$ soil texture depth of A-horizon Total Base exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type soil consistency aspect effective $P_2O_5$ depth of A-horizon exchangeable $K_2O$ soil moisture Total Base altitude soil depth base saturation relief T-N C/N ratio and deposit from. 7. In the multiple regression of forest soil's physical properties larch's correlation coefficient is 0.9272 and for the Korean white pine it is 0.8996. With chemical properties larch has 0.7474 and the Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properties are not less important than the physical properties. In the multiple regression of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for the Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients larch needs deeper soil depth than the Korean white pine and in the deposit form colluvial and creeping soils are demanded by the larch. Adequately moist to too moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief soil moisture PH N altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variation as plantation environments. For larch siting soil depth deposit form relief soil moisture PH soil type N and soil texture are indicators of good growth and for Korean white pine they are soil type soil consistency effective $P_2O_5$ and exchangeable $K_2O$, which is demanded more by the Korean white pine than larch generally. 9. Physical properties of soil has been known as affecting tree growth to greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for larch and the Korean white pine that have been uncertain So far could be clarified.

  • PDF

Analysis on the Relation between the Morphological Physical and Chemical Properties of Forest Soils and the Growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification (수량화(數量化)에 의(依)한 우리나라 삼림토양(森林土壤)의 형태학적(形態学的) 및 이화학적(理化学的) 성질(性質)과 잣나무 및 낙엽송(落葉松)의 생장(生長) 상관분석(相關分析))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.1-26
    • /
    • 1981
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in sccordance with multi-variate analysis. 2. Test species, japanese larch (Larix leptolepis Gord) and the Korean white pine, (pinus koraiensis S et Z.) are plantable in extensive areas from mid to north in the temperate forest zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are little known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth, but, when Japanese larch is planted in Korean white pine site it can be hardly said that the Japanese Larch growth is good. To understand on such a difference soil factors have been studied so as to see how th soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 Japanese larch plots and 259 Korean white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analyses of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the decreasing order of weight deposit form, soil depth, soil moisture, altitude, relief, soil type, depth a A-horizon, soil consistency, content of organic matter, soil texture, bed rock, gravel content, aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency, bed rock, aspect, depth of A-horizon, soil moisture, altitude, relief, deposit form, soil depth, soil texture, gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of base saturation, organic matter, CaO, C/N ratio, effective $P_2O_5$, PH, exchangeable, $K_2O$, T-N, MgO, CEC, Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$, Total Base, T-N, Na, C/N ratio, PH, CaO, base saturation, organic matter, exchangeable $K_2O$, CEC and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of soil depth, deposit form, soil moisture, PH, relief, soil type altitude, T-N, soil consistency, effective $P_2O_5$, soil texture, depth of A-horizon, Total Base, exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type, soil consistency, aspect, effective $P_2O_5$, depth of A-horizon, exchangeable $K_2O$, soil moisture, Total Base, altitude, soil depth, base saturation, relief, T-N, C/N ratio and deposit form. 7. In the multiple correlation of forest soil's physical properties larch's correlation coefficient for Japanese Larch is 0.9272 and for Korean white pine, 0.8996. With chemical properties larch has 0.7474 and Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properities are not less important than the physical properties. In the multiple correlation of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients Japanese larch needs deeper soil depth than Korean white pine and in the deposit form of colluvial and creeping soils are demanded by the larch. Moderately moist to not moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N, soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief, soil moisture, PH, N, altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variations as plantation environments. For the larch siting soil depth, deposit form, relief, soil moisture, pH, soil type, N and soil texture are indicators of good growth and for the Korean white pine they are soil type, soil consistency, effective $P_2O_5$ and exchangeable $K_2O$. In soil nutrients larch has been found out demanding more than the Korean white pine except $K_2O$, which is demanded more by the Korean white pine than Japanese larch generally. 9. Physical properties of soil has been known as affecting tree growth to the greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for the Japanese larch and the Korean white pine that have been uncertain so far could be clarified.

  • PDF

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Stand Structure of Actual Vegetation in the Natural Forests and Plantation Area of Mt. Janggunbong, Bonghwa-Gun (봉화군 장군봉 일대 천연림과 인공조림지내 현존식생의 임분구조)

  • Byeon, Seong-Yeob;Yun, Chung-Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.1032-1046
    • /
    • 2016
  • The purpose of this study was to provide basic information on ecological forest management in Janggunbong, Bonghwa-Gun. Vegetation data were collected from Janggunbong, Bonghwa-Gun, from July, 2014 to October, 2015. We carried out an analysis of vegetation types on the physiognomically dominant species of 111 quadrates. In the natural forest area, the vegetation community was classified into Quercus mongolica, Betula schmidtii, Pinus densiflora, Quercus variabilis and Tilia amurensis. In the plantation area, the vegetation community was classified into Pinus koraiensis, Larix kaempferi, Fraxinus rhynchophylla and Betula platyphylla var. japonica. Based on the analysis of the importance value of the species in the slope area, it was seen that the tree layers of the natural forest were dominated by Quercus mongolica at 44.3, and Pinus densiflora at 12.1. The importance values of the subtree layer of the natural forest were found to be 27.6 for Quercus mongolica, and 12.4 for Fraxinus sieboldiana. Also, the importance values of the tree layers in the plantation areas were found to be 22.6 for Pinus koraiensis, 15.4 for Larix kaempferi, and 13.3 for Fraxinus rhynchophylla, while those of the subtree layers of the plantation area were found to be17.9 for Quercus variabilis, 14.1 for Parthenocissus tricuspidata, and 10.4 for Quercus mongolica in that order. Vine plants showed higher importance values in the plantation area than in the natural forest area. Species diversity in the valley area was 2.334 in the natural forest area, and 1.734 in the plantation area. That of natural forest area was 1.931, and that of plantation area was 1.927 in slope area. For management of the forest vegetation in Mt. Janggunbong, a distinct forest management plan, customized for each topography and physiognomical community unit should be made Particularly, the administration is required to consider strategies to reduce the higher importance value for vine plants in the plantation areas.

Predicting Potential Habitat for Hanabusaya Asiatica in the North and South Korean Border Region Using MaxEnt (MaxEnt 모형 분석을 통한 남북한 접경지역의 금강초롱꽃 자생가능지 예측)

  • Sung, Chan Yong;Shin, Hyun-Tak;Choi, Song-Hyun;Song, Hong-Seon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.469-477
    • /
    • 2018
  • Hanabusaya asiatica is an endemic species whose distribution is limited in the mid-eastern part of the Korean peninsula. Due to its narrow range and small population, it is necessary to protect its habitats by identifying it as Key Biodiversity Areas (KBAs) adopted by the International Union for Conservation of Nature (IUCN). In this paper, we estimated potential natural habitats for H. asiatica using maximum entropy model (MaxEnt) and identified candidate sites for KBA based on the model results. MaxEnt is a machine learning algorithm that can predict habitats for species of interest unbiasedly with presence-only data. This property is particularly useful for the study area where data collection via a field survey is unavailable. We trained MaxEnt using 38 locations of H. asiatica and 11 environmental variables that measured climate, topography, and vegetation status of the study area which encompassed all locations of the border region between South and North Korea. Results showed that the potential habitats where the occurrence probabilities of H. asiatica exceeded 0.5 were $778km^2$, and the KBA candidate area identified by taking into account existing protected areas was $1,321km^2$. Of 11 environmental variables, elevation, annual average precipitation, average precipitation in growing seasons, and the average temperature in the coldest month had impacts on habitat selection, indicating that H. asiatica prefers cool regions at a relatively high elevation. These results can be used not only for identifying KBAs but also for the reference to a protection plan for H. asiatica in preparation of Korean reunification and climate change.

The Characteristics and Genesis of Terrace Soils in Yeongnam Area -I. Macro-Morphological Features and Soil Profile Development Index of the Terrace Soils (영남지역(嶺南地域)에 분포(分布)된 단구지토양(段丘地土壤)의 특성(特性)과 생성연구(生成硏究) -제(第) 1 보(報) 단구지토양(段丘地土壤)의 형태적특성(形態的特性)과 토양단면발달도(土壤斷面發達度))

  • Jung, Y.T.;Um, K.T.;Ha, H.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.177-188
    • /
    • 1985
  • To clarify the characteristics and genesis of clayey terrace soils in Yeongnam area, macro-morphological features and soil profile development indexes were investigated with the sequential soils in Yeongcheon (inland region) and in Yeongil (coastal region). The results are summarized as follows; 1. According to the physiogaphy and landuse, the terrace soils were discernible to well drained yellowish red (5 YR) profile of higher terrace (Bancheon series), moderately well drained reddish yellow (7.5 YR) profile of middle terraces (Upyeong and Hwadong series), and lower terraces (Deogpyeong and Geugrag series) which were moderately well to imperfectly drained by paddy-fication. 2. The roundness and sphericity of the gravels contained in the terrace deposits were ranged around 0.543-0.546 and 0.723-0.722, respectively. The rounded to well rounded gravels were resemble to typical alluvial origins. 3. The amount of clay minerals formed in the soil horizons per 100g of parent materials were 50.8-30.7g while the rates of the clay leached were 30.1-7.4%, and the higher terrace had the more leaching rates. 4. The index of profile development of the terrace soils ranged from 37.95 to 22.01 and the index were positively correlated with relative elevations of the soils. The rates of clay leaching were positively correlated with the ratios of clay in the illuvial horizons to elluvial horizons. 5. A similarity was observed among cumulative grain size curves of the terrace soils, but the patterns of recalculated silt free cumulative grain size curve of terrace deposits in Upyeong soils in Yeongil area were abruptly different from down layer that suggest the soil to have bisequum profile.

  • PDF