DOI QR코드

DOI QR Code

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image

Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구

  • Chae, Sung-Ho (Center for Environmental Assessment Monitoring, Korea Environment Institute) ;
  • Park, Sung-Hwan (Department of Geoinformatics, The University of Seoul) ;
  • Lee, Moung-Jin (Center for Environmental Assessment Monitoring, Korea Environment Institute)
  • 채성호 (한국환경정책.평가연구원) ;
  • 박숭환 (서울시립대학교 공간정보공학과) ;
  • 이명진 (한국환경정책.평가연구원)
  • Received : 2017.09.13
  • Accepted : 2017.11.30
  • Published : 2017.12.31

Abstract

The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.

본 연구는 토양의 수분 상태를 고해상으로 관측 및 분석하고 농업분야에의 응용 가능성을 평가하기 위한 연구이다. 이를 위하여 Landsat-8 OLI(Operational Land Imager)/TIRS(Thermal Infrared Sensor)의 광학 및 열적외선 위성영상을 연구자료로 전라북도 농업지역을 포함(연구자료 내 46%)하는 2015, 2016, 및 2017년 5-6월에 촬영된 영상 세 장을 이용하였다. 연구지역의 각 영상 촬영일의 토양의 수분 상태는 SPI(Standardized Precipitation Index)3 가뭄지수를 통하여 효과적으로 획득할 수 있으며, 각 영상은 보통, 습윤, 및 건조한 토양 수분 조건을 갖는다. 이러한 각기 다른 토양수분 조건을 갖는 영상을 대상으로 토양의 수분 상태를 관측하고 SPI3 가뭄지수로부터 획득한 토양의 수분 상태와 비교/분석을 수행기 위하여, TVDI(Temperature Vegetation Dryness Index)를 계산하였다. TVDI는 Landsat-8 OLI/TIRS 위성영상으로부터 계산한 LST(Land Surface Temperature) 및 NDVI(Normalized Difference Vegetation Index)의 관계로부터 추정하여 계산된다. LST-NDVI의 형상 공간 내 픽셀의 분포에서 NDVI에 따른 LST의 최대/최소값을 추출하고 이를 대상으로 각각 선형회귀분석(linear regression analysis)을 통하여 NDVI에 따른 LST의 Dry/Wet edge를 결정할 수 있으며, 최종적으로 NDVI에 따른 두 edge 사이에서의 LST 값의 비율을 계산하여 TVDI 값을 계산한다. TVDI 값으로부터 관측된 영상 내 상대적인 토양의 수분 상태를 매우 습윤, 습윤, 보통, 건조, 매우 건조의 5단계로 분류하여 SPI3로부터 획득한 각각의 토양수분 상태와 비교하였다. 연구자료 획득시기인 5-6월 시기의 특성상 모내기로 인하여 영상 내 가장 많은 비율을 차지하는 논 지역의 영향으로 영상 전체 중, 약 62% 이상이 습윤 및 매우 습윤한 상태로 분류되었다. 또한, 보통으로 분류되는 픽셀은 영상 내 밭 지역의 영향 때문으로 분석되었다. 영상 전체에 대해서는 대략적으로 SPI3의 토양수분 상태와 대응하였지만 매우 건조, 습윤, 및 매우 습윤에 해당하는 세분류 결과에서는 SPI3 토양수분 상태와 대응하지 않았다. 또한, 영상에서 논과 밭의 농업지역을 추출 및 분류한 후, SPI3 토양수분 상태와 비교하였을 때, 논 지역의 토양수분 상태 관측 분류 결과는 매우 건조, 보통 및 매우 습윤에서, 밭 지역은 보통의 분류에서만 SPI3 가뭄지수와 대응하지 않았다. 이는 매우 건조한 나지 및 매우 습윤한 모내기로 인한 논 지역, 수계, 구름 및 산지 지형효과 등의 이상치로 인하여 잘못된 Dry/Wet edge 추정의 문제로 사료되어진다. 그러나 5-6월 시기의 농업지역 중, 밭 지역에서는 세분류된 토양의 수분 상태를 효과적으로 관측할 수 있었다. 고해상 광학위성 기반 농업지역에 대한 토양수분 상태의 시 공간적 변화를 관측하여 농업지역의 농업생산량예측 등 그 응용이 가능할 것으로 사료된다.

Keywords

References

  1. Bindlish, R., T. J. Jackson, A. Gasiewski, B. Stankov, M. Klein, M. H. Cosh, I. Mladenova, C. Watts, E. Vivoni, V. Lakshmi, J. Bolten, and T. Keefer, 2008. Aircraft based soil moisture retrievals under mixed vegetation and topographic conditions, Remote Sensing of Environment, 112(2): 375-390. https://doi.org/10.1016/j.rse.2007.01.024
  2. Chen, J., C. Z. Wang, H. Jiang, L. X. Mao, and Z. R. Yu, 2011. Estimating soil moisture using Temperature-Vegetation Dryness Index (TVDI) in the Huanghuai-hai (HHH) plain, International Journal of Remote Sensing, 32(4): 1165-1177. https://doi.org/10.1080/01431160903527421
  3. Chen, S., Z. Wen, H. Jiang, Q. Zhao, X. Zhang, and Y. Chen, 2015. Temperature vegetation dryness index estimation of soil moisture under different tree species, Sustainability, 7(9): 11401-11417. https://doi.org/10.3390/su70911401
  4. Choi, S., S. Lee, and B. Wang, 2014. Analysis of vegetation cover fraction on landsat OLI using NDVI, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(1): 9-17 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2014.32.1.9
  5. Gao, Z. Q., W. Gao, and N. B. Chang, 2011. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images, International Journal of Applied Earth Observation and Geoinformation, 13(3): 495-503. https://doi.org/10.1016/j.jag.2010.10.005
  6. Gao, Z., X. Xu, J. Wang, H. Yang, W. Huang, and H. Feng, 2013. A method of estimating soil moisture based on the linear decomposition of mixture pixels, Mathematical and Computer Modelling, 58(3-4): 606-613. https://doi.org/10.1016/j.mcm.2011.10.054
  7. Gao, S.G., Z .L. Zhu, S.M. Liu, R. Jin, G.C. Yang, and L. Tan, 2014. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing, International Journal of Applied Earth Observation and Geoinformation, 32: 54-66. https://doi.org/10.1016/j.jag.2014.03.003
  8. Ghulam, A., Q. Qin, and T. Teyip, 2007. Modified perpendicular drought index (MPDI): A realtime drought monitoring method, ISPRS Journal of Photogrammetry and Remote Sensing, 62(2): 150-164. https://doi.org/10.1016/j.isprsjprs.2007.03.002
  9. Goetz, S. J., 1997. Multisensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site, International Journal of Remote Sensing, 18: 71-94. https://doi.org/10.1080/014311697219286
  10. Goward, S. N., Y. Xue, and K. P. Czajkowski, 2002. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measure: An exploration with the simplified biosphere model, Remote Sensing of Environment, 79(2-3): 225-242. https://doi.org/10.1016/S0034-4257(01)00275-9
  11. Han, Y., Y. Q. Wang, and Y. S. Zhao, 2010. Estimating Soil Moisture Conditions of the Greater Changbai Mountains by Land Surface Temperature and NDVI, IEEE Transactions on Geoscience and Remote Sensing, 48(6): 2509-2515. https://doi.org/10.1109/TGRS.2010.2040830
  12. Heim, R.R, 2002. A review of twentieth-century drought indices used in the United States, Bulletin of the American Meteorological Society, 83(8): 1149-1165. https://doi.org/10.1175/1520-0477-83.8.1149
  13. Irons, J. R., J. L. Dwyer, and J. A. Barsi, 2012. The next Landsat satellite: The Landsat Data Continuity Mission, Remote Sensing of Environment, 122: 11-21. https://doi.org/10.1016/j.rse.2011.08.026
  14. Jeollabuk-do, 2016. Geography and Climate of Jeonbuk, http://www.jeonbuk.go.kr, Accessed on Dec. 12, 2017.
  15. Liu, W., F. Baret, X. Gu, B. Zhang, Q. Tong, and L. Zheng, 2003. Evaluation of methods for soil surface moisture estimation from reflectance data, International Journal of Remote Sensing, 24(10): 2069-2083. https://doi.org/10.1080/01431160210163155
  16. Lobell, D. B. and G. P. Asner, 2002. Moisture effects on soil reflectance, Soil Science Society of America Journal, 66: 722-727. https://doi.org/10.2136/sssaj2002.7220
  17. Luquet, D., A. Vidal, J. Dauzat, A. Begue, A. Olioso, and P. Clouvel, 2004. Using directional TIR measurements and 3D simulations to assess the limitations and opportunities of water stress indices, Remote Sensing of Environment, 90(1): 53-62. https://doi.org/10.1016/j.rse.2003.09.008
  18. Mckee, T. B., N. J. Doesken, and J. Kleist, 1993. The relationship of drought frequency and duration to time scales, Proc. of the 8th Conference on Applied Climatology, Aneheim, CA, Jan. 17-22, pp. 179-184.
  19. Moran, M. S., R. D. Jackson, P. N. Slater, and P. M. Teillet, 1992. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output, Remote Sensing of Environment, 41(2-3): 169-184. https://doi.org/10.1016/0034-4257(92)90076-V
  20. Moran, M.S., T. R. Clarke, Y. Inoue, and A. Vidal, 1994. Estimating crop water deficit using the relation between surface-Air temperature and spectral vegetation index, Remote Sensing of Environment, 49(3): 246-263. https://doi.org/10.1016/0034-4257(94)90020-5
  21. Patel, N.R., R. Anapashsha, S. Kumar, S. K. Saha, and V. K. Dadhwal, 2009. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status, International Journal of Remote Sensing, 30(1): 23-39. https://doi.org/10.1080/01431160802108497
  22. Qin, J., K. Yang, N. Lu, Y. Chen, L. Zhao, and H. Han, 2013. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia, Remote Sensing of Environment, 138: 1-9. https://doi.org/10.1016/j.rse.2013.07.003
  23. Rahimzadeh-bajgiran, P., K. Omasa, and Y. Shimizu, 2012. Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran, ISPRS Journal of Photogrammetry and Remote Sensing, 68: 1-12. https://doi.org/10.1016/j.isprsjprs.2011.10.009
  24. Rouse, J. W., 1974. Monitoring vegetation Systems in the Great Plains with ERTS, Proc. of Third Earth Resources Technology Satellite-1 Symposium, Greenbelt, MD: NASA. Goddart Space Flight Center, pp. 309-317.
  25. Sandholt, I., K. Rasmussen, and J. Andersen, 2002. A simple interpretation of the surface temperature vegetation index space for assessment of surface moisture status, Remote Sensing of Environment, 79(2-3): 213-224. https://doi.org/10.1016/S0034-4257(01)00274-7
  26. Sellers P. J. and D. S. Schimel, 1993. Remote sensing of the land biosphere and biogeochemistry in the EOS era: Science priorities, methods and implementation, Global Planetary Change, 7(4): 279-297. https://doi.org/10.1016/0921-8181(93)90002-6
  27. Stephen, S., 2010. Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data, Journal of Geophysical Research, 115(F2): F0219(1-23).
  28. Song K., X. Zhou, and Y. Fan, 2009. Empirically adopted IEM for retrieval of soil moisture from radar backscattering coefficients, IEEE Transactions on Geoscience and Remote Sensing, 47(6): 1662-1672. https://doi.org/10.1109/TGRS.2008.2009061
  29. Svoboda, M., M. Hayes, and D. Wood, 2012. Standardized precipitation index user guide, World Meteorological Organization Geneva, Switzerland.
  30. USGS, 2016. Landsat 8 (L8) Data Users Handbook Version 2.0, EROS, Sioux Falls, South Dakota, https://landsat.usgs.gov/landsat-8-l8-data-usershandbook, Accessed on Dec. 8, 2017.
  31. Verstraeten, W. W., F. Veroustraete, C. J. van der Sande, I. Grootaersn, and J. Feyen, 2006. Soil moisture retrieval using thermal inertia, determined with visible and thermal space-borne data, validated for European forests, Remote Sensing of Environment, 101(3): 299-314. https://doi.org/10.1016/j.rse.2005.12.016
  32. Wang, L. and J. J. Qu, 2007. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing, Geophysical Research Letters, 34(20): L20405(1-5). https://doi.org/10.1029/2007GL031021
  33. Whiting, M.L., L. Li, and S. L. Ustin, 2004. Predicting Water Content Using Gaussian Model on Soil Spectra, Remote Sensing of Environment, 89(4): 535-552. https://doi.org/10.1016/j.rse.2003.11.009
  34. Xin, J. F., G. L. Tian, Q. H. Liu, and L. F. Chen, 2006. Combining vegetation index and remotely sensed temperature for estimation of soil moisture in China, International Journal of Remote Sensing, 27(10): 2071-2075. https://doi.org/10.1080/01431160500497549
  35. Yan, F., Z. Qin, and M. Li, 2006. Progress in soil moisture estimation from remote sensing data for agricultural drought monitoring, Proc. of SPIE Remote Sensing, Stockholm, Sweden, Oct. 3, vol.6366.
  36. Younis, S. M. Z. and J. Iqbal, 2015. Estimation of soil moisture using multispectral and FTIR techniques, The Egyptian Journal of Remote Sensing and Space Science, 18(2): 151-161. https://doi.org/10.1016/j.ejrs.2015.10.001
  37. Zhang, C., S. Ni, and Z. Liu, 2006. Review on Methods of Monitoring Soil Moisture Based on Remote Sensing, Journal of Agricultural Engineering, 6, 58-61.
  38. Zhang, D. and G. Zhou, 2016. Estimation of soil moisture from optical and thermal remote sensing: A review, Sensors, 16(8): E1308(1-29). https://doi.org/10.3390/s16081308

Cited by

  1. Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010-2025) vol.13, pp.3, 2021, https://doi.org/10.3390/rs13030347
  2. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9