• Title/Summary/Keyword: 지하 사일로

Search Result 13, Processing Time 0.018 seconds

Numerical Study of Structural Behavior of Underground Silo Structures for Low-and-Intermediate-level Radioactive Waste Disposal Facility (중저준위 방폐물 처분 사일로 구조물의 구조거동 수치해석 연구)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2022
  • The construction of an underground silo structure was the first stage of erecting the Gyeongju low-and-intermediate-level radioactive waste disposal facility. The facility, completed in 2014, has a scale of 100 000 drums and is currently in operation. The underground silo structure, 25 and 50 m in diameter and height, respectively, consists of cylindrical (for storing waste packages) and dome parts. The dome is divided into lower (connected to the operation tunnel) and upper parts. The wall of the underground silo structure is an approximately 1-m-thick reinforced concrete liner. In this study, finite element analysis was performed for each phase of the construction sequence and operation of the underground silo structure. Two-dimensional axial symmetric finite element analysis was implemented using the SMAP-3D program. Three-dimensional finite element analysis was also performed to examine the reliability of the two-dimensional axial symmetric finite element model. The structural behavior of the underground silo structure was predicted, and its structural safety was examined.

Finite Element Analysis of Silo Type Underground Opening for LILW Disposal Facility (사일로 구조형식 중저준위 방폐물 처분동굴의 유한요소 해석)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.339-345
    • /
    • 2021
  • Finite element analysis of the silo type underground opening for low- and intermediate-level radioactive waste (LILW) disposal facilities in Korea is presented in this study. The silo wall is circular and the roof is made up of domes. The silo wall is 25 meters in diameter, 35 meters in height, and the dome is 30 meters in diameter and 17.4 meters in height, and it is located at -80 meters to -130 meters at sea level. Although six silos have been constructed in the first stage and are in operation, only one silo was considered in this study. The two-dimensional axial symmetric finite element model, as well as the three-dimensional finite element model were made using the computer program SMAP-3D. Generalized Hoek and Brown Model was used for the numerical analyses. The finite element analysis of the silo type underground opening was carried out under various lateral pressure coefficients (defined as ratio of average horizontal to vertical in-situ stress), and the numerical results of these analyses were examined.

Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model Development (월성 중저준위 처분시설 다중사일로 안정성 평가 모델 - 1단계: 모델개발)

  • Lim, Doo-Hyun;Kim, Jee-Yeon;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • An integrated model for groundwater flow and radionuclide transport analyses is being developed incorporating six underground silos, an excavated damaged zone (EDZ), and fractured host rock. The model considers each silo as an engineered barrier system (EBS) consisting of a waste zone comprising waste packages and disposal container, a buffer zone, and a concrete lining zone. The EDZ is the disturbed zone adjacent to silos and construction & operation tunnels. The heterogeneity of the fractured rock is represented by a heterogeneous flow field, evaluated from discrete fractures in the fractured host rock. Radionuclide migration through the EBS in silos and the fractured host rock is simulated on the established heterogeneous flow field. The current model enables the optimization of silo design and the quantification of the safety margin in terms of radionuclide release.

Determination of acoustic emission signal attenuation coefficient of concrete according to dry, saturation, and temperature condition (포화유무 및 온도조건에 따른 콘크리트 음향방출 신호 감쇠계수 결정)

  • Lee, Hang-Lo;Hong, Chang-Ho;Kim, Jin-Seop;Kim, Ji-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.39-55
    • /
    • 2022
  • This study carried out the laboratory tests for AE signal attenuation to determine the attenuation coefficient (α) of silo concrete in Gyeongju low and intermediate-level disposal environments. The concrete samples were prepared by satisfying the concrete mixing ratio used in the Gyeongju disposal silo, and these samples were additionally exposed depending on the temperature conditions and saturation and, dry condition. As a result of attenuation tests according to the transmission distance on three concrete specimens for each disposal condition, the AE amplitude and absolute energy measured on the saturated concrete were higher than that of the dry concrete in the initial range of the signal transmission distance, but the α of the saturated concrete was higher than that of the dry concrete. Regardless of the saturation and dry conditions, the α tended to decrease as the temperature increases. The α had a more major influence on the saturation and dry condition than the temperature condition, which means that the saturation and dry condition is the main consideration in measuring the signal attenuation of a concrete disposal structure. The α of concrete in the disposal environment expect to be used to predict the integrity of silos concrete in Gyeongju low and intermediate-level disposal environments by estimating the actual AE parameter values at the location of cracks and to determine the optimum location of sensors.

Development of hydro-mechanical-damage coupled model for low to intermediate radioactive waste disposal concrete silos (방사성폐기물 처분 사일로의 손상연동 수리-역학 복합거동 해석모델 개발)

  • Ji-Won Kim;Chang-Ho Hong;Jin-Seop Kim;Sinhang Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.191-208
    • /
    • 2024
  • In this study, a hydro-mechanical-damage coupled analysis model was developed to evaluate the structural safety of radioactive waste disposal structures. The Mazars damage model, widely used to model the fracture behavior of brittle materials such as rocks or concrete, was coupled with conventional hydro-mechanical analysis and the developed model was verified via theoretical solutions from literature. To derive the numerical input values for damage-coupled analysis, uniaxial compressive strength and Brazilian tensile strength tests were performed on concrete samples made using the mix ratio of the disposal concrete silo cured under dry and saturated conditions. The input factors derived from the laboratory-scale experiments were applied to a two-dimensional finite element model of the concrete silos at the Wolseong Nuclear Environmental Management Center in Gyeongju and numerical analysis was conducted to analyze the effects of damage consideration, analysis technique, and waste loading conditions. The hydro-mechanical-damage coupled model developed in this study will be applied to the long-term behavior and stability analysis of deep geological repositories for high-level radioactive waste disposal.

Numerical simulation of groundwater flow in LILW Repository site:II. Input parameters for Safety Assessment (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 2. 처분 안전성 평가 인자)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Koh, Yong-Kwon;Kim, Geon-Young;Kim, Jin-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2008
  • The numerical simulations for groundwater flow were carried out to support the input parameters for safety assessment in LILW repository site. As the input parameters for safety assessment, the groundwater flux into the underground facilities during construction, flow rate through the disposal silo after closure of disposal silo and flow pathway from the disposal silo to discharge area were analyzed using the 10 cases groundwater flow simulations. From the total 10 numerical simulation results, the statistics of estimated output were similar to among 10 cases. In some cases, the analyzed input parameters were strongly governed by locally existed high permeable fracture zone at radioactive waste disposed depth. Indeed, numerical simulation for well scenario as a human intrusion scenario was carried out using the hydraulically severe case model. Using the results of well scenario, the input parameters for safety assessment were also obtained through the numerical simulation.

  • PDF

An Introduction to the Expansion Plan of the Underground Repository of Low- and Intermediate-level Radioactive Waste In Forsmark, Sweden (스웨덴 포쉬마크 중저준위 방사성 폐기물 지하 처분장 확장 계획 소개)

  • Kwon, Saeha;Min, Ki-Bok;Stephansson, Ove
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.339-347
    • /
    • 2016
  • The world's first underground repository for low- and intermediate- level radioactive waste (SFR1) has been in operation since 1988. SFR1 can accommodate $1,000m^3$ of radioactive waste per year with 4 chambers and 1 silo with a total capacity of $63,000m^3$ of radioactive waste. With extended operation time of 10 of the 12 nuclear power reactors and dismantling of the other 2 nuclear reactors, more nuclear waste need to be disposed in the future. Therefore, Swedish Nuclear Fuel and Waste Management Company (SKB) submitted a license application for a repository extension (SFR3) that consists of 6 additional rock chambers with a capacity of $108,000m^3$ of radioactive waste and for accommodating 9 boiling water reactor tanks. In this study, plans for the extension SFR3 are presented with the geological, geomechanical and hydrogeological issues to be considered.

Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 1. 지하수 유동 모델링)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Kim, Chun-Soo;Kim, Kyung-Su;Kim, Ji-Yeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.265-282
    • /
    • 2008
  • Based on the site characterization works in a low and intermediate level waste(LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network(DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  • PDF

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.