• Title/Summary/Keyword: 지하매질

Search Result 202, Processing Time 0.03 seconds

Design and Performance Analysis of UWB Modules for Borehole Radar System (시추공 레이더 시스템에 사용되는 UWB 모듈의 설계 및 성능 분석)

  • Cho, Jae-Hyoung;Kim, Sang-Wook;Kim, Se-Yun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1121-1129
    • /
    • 2009
  • In this paper, the UWB(Ultra-Wide Band) modules such as a pulse generator and the LNA(Low-Noise Amplifier) with AGC(Auto Gain Control) are designed to construct a cross-borehole pulse radar system, of which performance is compared with the existing system. The budget and specification of the radar system are determined by calculating the total path loss of the underground medium including an empty cavity. The pulse generator is fabricated to have the repeatation frequency 40 kHz, the pulse width lower than 5 ns and the peak signal level +73 dBm. The UWB LNA is designed to have the noise figure 3.77 dB, the variable gain range 100 dB and the frequency range of 20 MHz to 200 MHz. Compared with the existing system in an actual test site, the implemented system renders it possible to detect the blind area due to the UWB LNA with low noise figure.

Homogenization of Elastic Cracks in Hoek-Brown Rock (Hoek-Brown 암석에서 발생된 탄성균열의 균질화)

  • Lee, Youn-Kyou;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.158-166
    • /
    • 2009
  • As a basic study for investigating the development of the stress-induced crack in Hoek-Brown rock, a homogenization technique of elastic cracks is proposed. The onset of crack is monitored by Hoek-Brown empirical criterion, while the orientation of the crack is determined by the critical plane approach. The concept of volume averaging in stress and strain component was invoked to homogenize the representative rock volume which consists of intact rock and cracks. The formulation results in the constitutive relations for the homogenized equivalent anisotropic material. The homogenization model was implemented in the standard FEM code COSMOSM. The numerical uniaxial tests were performed under plane strain condition to check the validity of the propose numerical model. The effect of friction between the loading plate and the rock sample on the mode of deformation and fracturing was examined by assuming two different contact conditions. The numerical simulation revealed that the homogenized model is able to capture the salient features of deformation and fracturing which are observed commonly in the uniaxial compression test.

A Study on Velocity-Log Conductivity, Velocity-Head Cross Covariances in Aquifers with Nonstationary Conductivity Fields (비정체형 지하대수층의 속도-대수투수계수, 속도-수두 교차공분산에 관한 연구)

  • Seong, Gwan-Je
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.4
    • /
    • pp.363-373
    • /
    • 1998
  • In this study, random flow field in a nonstationary porous formation is characterized through cross covariances of the velocity with the log conductivity and the head. The hydraulic head and the velocity in saturated aquifers are found through stochastic analysis of a steady, two-dimensional flow field without recharge. Expression for these cross covariances are obtained in quasi-analytic forms all in terms of the parameters which characterize the nonstationary conductivity field and the average head gradient. The cross covariances with a Gaussian correlation function for the log conductivity are presented for two particular cases where the trend is either parallel or perpendicular to the mean head gradient and for separation distances along and across the mean flow direction. The results may be of particular importance in transport predictions and conditioning on field measurements when the log conductivity field is suspected to be nonstationary and also serve as a benchmark for testing nonstationary numerical codes. Keywords : cross covariance, nonstationary conductivity field, saturated aquifer, stochastic analysis.

  • PDF

Waveform inversion of shallow seismic refraction data using hybrid heuristic search method (하이브리드 발견적 탐색기법을 이용한 천부 굴절법 자료의 파형역산)

  • Takekoshi, Mika;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • We propose a waveform inversion method for SH-wave data obtained in a shallow seismic refraction survey, to determine a 2D inhomogeneous S-wave profile of shallow soils. In this method, a 2.5D equation is used to simulate SH-wave propagation in 2D media. The equation is solved with the staggered grid finite-difference approximation to the 4th-order in space and 2nd-order in time, to compute a synthetic wave. The misfit, defined using differences between calculated and observed waveforms, is minimised with a hybrid heuristic search method. We parameterise a 2D subsurface structural model with blocks with different depth boundaries, and S-wave velocities in each block. Numerical experiments were conducted using synthetic SH-wave data with white noise for a model having a blind layer and irregular interfaces. We could reconstruct a structure including a blind layer with reasonable computation time from surface seismic refraction data.

Fluid Flow and Solute Transport in a Discrete Fracture Network Model with Nonlinear Hydromechanical Effect (비선형 hydromechanic 효과를 고려한 이산 균열망 모형에서의 유체흐름과 오염물질 이송에 관한 수치모의 실험)

  • Jeong, U-Chang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.347-360
    • /
    • 1998
  • Numerical simulations for fluid flow and solute transport in a fracture rock masses are performed by using a transient flow model, which is based on the three-dimensional stochastic and discrete fracture network model (DFN model) and is coupled hydraulic model with mechanical model. In the numerical simulations of the solute transport, we used to the particle following algorithm which is similar to an advective biased random walk. The purpose of this study is to predict the response of the tracer test between two deep bore holes (GPK1 and GPK2) implanted at Soultz sous Foret in France, in the context of the geothermal researches.l The data sets used are obtained from in situcirculating experiments during 1995. As the result of the transport simulation, the mean transit time for the non reactive particles is about 5 days between two bore holes.

  • PDF

Performance Evaluation of OGS-FLAC Simulator for Coupled Thermal-Hydrological-Mechanical Analysis (열-수리-역학적 연계해석을 위한 OGS-FLAC 시뮬레이터의 성능 평가)

  • Park, Dohyun;Park, Chan-Hee
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.144-159
    • /
    • 2022
  • The present study developed a sequential approach-based numerical simulator for modeling coupled thermal-hydrological-mechanical (THM) processes in the ground and investigated the computational performance of the coupling analysis algorithm. The present sequential approach linked the two different solvers: an open-source numerical code, OpenGeoSys for solving the thermal and hydrological processes in porous media and a commercial code, FLAC3D for solving the geomechanical response of the ground. A benchmark test of the developed simulator was carried out using a THM problem where an analytical solution is given. The benchmark problem involves the coupled behavior (variations in temperature, pore pressure, stress, and deformation with time) of a fully saturated porous medium which is subject to a point heat source. The results of the analytical solution and numerical simulation were compared and the validity of the numerical simulator was investigated.

Numerical Study on Effect of Mesh Size on Vibration and Overpressure Propagation Induced by Underwater Blasting (수중발파로 인한 과압 및 진동 전파에서 메쉬크기의 영향에 대한 수치해석 연구)

  • Jeong, Hoyoung;Son, Hanam;Kim, Suhan;Kim, Yeolwoo
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.578-592
    • /
    • 2021
  • This study performed to investigate the propagation characteristics of overpressure, impulse, vibration in underwater blasting. The difference between air blasting and underwater blasting is that noise and vibration propagate through water as a medium. In some cases, the noise and vibration propagates through various media (rock, water, air, etc.). In this study, the underwater blasting was simulated using AUTODYN, and the propagation characteristics of overpressure, impulse and vibration induced by blasting were analyzed. We mainly focused on the effect of mesh size on the overpressure, impulse and peak particle velocity from the underwater blasting simulation. The numerical results indicated that the overpressure and peak particle velocity tended to decrease as the mesh size increased, while the impulse increased with the mesh size. The results also indicated that the mesh dependence varied depending on the explosive charge and scaled distance.

Extraction of Cole-Cole Parameters from Time-domain Induced Polarization Data (시간영역 유도분극 자료로부터 Cole-Cole 변수 산출)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Frequency-domain and time-domain induced polarization methods can provide spectral information about subsurface media. Analysis of spectral characteristics has been studied mainly in the frequency-domain, however, time-domain induced polarization research has recently become popular. In this study, assuming a homogeneous half-space model, an inversion method was developed to extract Cole-Cole parameters from the measured secondary potential or electrical resistivity. Since the Cole-Cole parameters of chargeability, time constant, and frequency index are not independent of each other, various problems, such as slow convergence rate, initial model problem, local minimum problem, and divergence, frequently occur when conventional nonlinear inversion is applied. In this study, we developed an effective inversion method using the initial model close to the true model by introducing a grid search method. Finally, the validity of the developed inversion method was verified using inversion experiments.

Benchmark Numerical Simulation on the Coupled Behavior of the Ground around a Point Heat Source Using the TOUGH-FLAC Approach (TOUGH-FLAC 기법을 이용한 점열원 주변지반의 복합거동에 대한 벤치마크 수치모사)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • The robustness of a numerical method means that its computational performance is maintained under various modeling conditions. New numerical methods or codes need to be assessed for robustness through benchmark testing. The TOUGH-FLAC modeling approach has been applied to various fields such as subsurface carbon dioxide storage, geological disposal of spent nuclear fuel, and geothermal development both domestically and internationally, and the modeling validity has been examined by comparing the results with experimental measurements and other numerical codes. In the present study, a benchmark test of the TOUGH-FLAC approach was performed based on a coupled thermal-hydro-mechanical behavior problem with an analytical solution. The analytical solution is related to the temperature, pore water pressure, and mechanical behavior of a fully saturated porous medium that is subjected to a point heat source. The robustness of the TOUGH-FLAC approach was evaluated by comparing the analytical solution with the results of numerical simulation. Additionally, the effects of thermal-hydro-mechanical coupling terms, fluid phase change, and timestep on the computation of coupled behavior were investigated.

Anisotrpic radar crosshole tomography and its applications (이방성 레이다 시추공 토모그래피와 그 응용)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.21-36
    • /
    • 2005
  • Although the main geology of Korea consists of granite and gneiss, it Is not uncommon to encounter anisotropy Phenomena in crosshole radar tomography even when the basement is crystalline rock. To solve the anisotropy Problem, we have developed and continuously upgraded an anisotropic inversion algorithm assuming a heterogeneous elliptic anisotropy to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. In this paper, we discuss the developed algorithm and introduce some case histories on the application of anisotropic radar tomography in Korea. The first two case histories were conducted for the construction of infrastructure, and their main objective was to locate cavities in limestone. The last two were performed In a granite and gneiss area. The anisotropy in the granite area was caused by fine fissures aligned in the same direction, while that in the gneiss and limestone area by the alignment of the constituent minerals. Through these case histories we showed that the anisotropic characteristic itself gives us additional important information for understanding the internal status of basement rock. In particular, the anisotropy ratio defined by the normalized difference between maximum and minimum velocities as well as the direction of maximum velocity are helpful to interpret the borehole radar tomogram.

  • PDF