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Abstract.

We propose a waveform inversion method for SH-wave data obtained in a shallow seismic refraction survey, to

determine a 2D inhomogeneous S-wave profile of shallow soils. In this method, a 2.5D equation is used to simulate SH-wave
propagation in 2D media. The equation is solved with the staggered grid finite-difference approximation to the 4th-order in
space and 2nd-order in time, to compute a synthetic wave. The misfit, defined using differences between calculated and
observed waveforms, is minimised with a hybrid heuristic search method. We parameterise a 2D subsurface structural model
with blocks with different depth boundaries, and S-wave velocities in each block. Numerical experiments were conducted
using synthetic SH-wave data with white noise foramodel having ablind layer and irregular interfaces. We could reconstructa
structure including a blind layer with reasonable computation time from surface seismic refraction data.
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Introduction

Local site amplification is one of the important factors that
determine earthquake ground motion at a site with soft soils.
Therefore, detailed subsurface structure is required to predict
strong ground motion at such a site during an earthquake. In
particular, the lateral variation of subsurface S-wave velocity
must be known in order to understand the spatial distribution of
earthquake ground motion.

Seismic refraction exploration, using SH waves generated by
plank hammering, is one of the most popular methods for deriving
a 2D shallow S-wave velocity structure in soft soils (e.g. Kramer,
1996). SH waves are recorded by seismometers deployed in a
survey line on the surface. Travel times of the initial phases of the
SH wave observed are used to deduce an S-wave velocity model
from the surface down to a depth of several tens of metres.
Although field operation and analysis in the shallow refraction
method is easy and simple, an observed S-wave profile is often too
simply interpreted as showing a single subsurface layer over a
firm soil, with constant velocities. We sometimes have difficulty
in determining a proper soil model from travel time data, if the
subsurface contains a blind layer, a velocity reversal, or similar.
The existence of these layers cannot be detected in conventional
travel time analysis of refracted initial phases (Burger, 1992).
Furthermore, travel time data is more or less contaminated with
ambient noise, because the initial phases are often small in
amplitude when compared with later phases. This also makes
it difficult to reconstruct a proper model.

It is possible to overcome these difficulties in travel time
analysis by conducting waveform inversion of refraction data,
using more information than first-motion travel time data. For
example, Pratt et al. (1998) proposed a waveform tomography
method, using a gradient-based inversion method with a
frequency-domain inversion approach. Waveform tomography
was applied in an analysis of shallow seismic data by Gao et al.
(2007). Sheng et al. (2006) proposed an early arrival waveform
tomography method for refraction data analysis. They applied an
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early arrival time window in the time domain to extract data for
waveform inversion. Although this method does retrieve more
information than is used in travel time inversions, the surface
wave parts of the waveform, which are usually sensitive to
shallow properties, are not included in their method.

Surface waves contain dispersive features that are dependent
on subsurface structure. In particular, the dispersive features are
mainly controlled by the S-wave velocity distribution. Therefore,
the surface wave dispersion method relies on an alternative
approach to using the shallow refraction waveform. In this
shallow S-wave profiling method, Rayleigh-wave phase
velocities are retrieved from the refraction data (e.g. Hayashi
and Suzuki, 2004). Since travel times of the initial S wave are not
used in the surface wave method, it is easily applied in noisy urban
areas. Although a 2D image of S-wave velocity can be derived
from the surface wave method, data must be acquired at many
stations for detailed imaging. Furthermore, separation of surface
wave modes must be done before the dispersion analysis, if
higher-mode surface waves have similar or larger amplitudes
to the fundamental modes.

In this study, we propose waveform inversion of shallow
seismic refraction data for a 2D inhomogeneous S-wave
profile, using a hybrid heuristic inversion algorithm. We use a
2.5D finite-difference calculation to generate the synthetic SH-
wave data. Introduction of the heuristic approach in the inversion
method enables us to find an optimal model in a complex error
space without being trapped in local-minimum solutions
(e.g. Yamanaka, 2005). After validation of the method using
synthetic data for a simple model, we examine its applicability to a
structure that has a blind layer that is hard to detect in travel time
inversions.

Method
Forward modelling

For waveform inversion, a forward modelling calculation is
required which can generate synthetic SH-seismograms with
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true amplitudes in a 2D inhomogeneous soil model from a point
source. Since the effects of 3D geometrical spreading must be
included in the calculation of the wave field even in 2D media, we
use a 2.5D equation of motion for SH waves, with expressions
relating stress and velocity as shown by
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The 2.5D equation of motion due to SH waves is numerically
solved with a 4th-order (space) and 2nd-order (time) central
finite-difference approximation. A staggered finite-difference
grid is used in the approximation. Absorbing and sponge
buffer boundary conditions are applied at the non-physical
boundaries on the bottom, left, and right sides of the finite-
difference grid model. The free surface condition is applied on
the upper boundary of the model.

Parameterisation

In tomographic inversions, subsurface structure is often
parameterised with many cells. In our case of waveform
inversions of conventional refraction data, there are a few, up
to 10, observation stations recording data from one or two shots at
the two ends of a surveying line. It is difficult to reconstruct a
tomographic image with many unknown parameters, such as in
Figure la, from such a small number of observed station data.
However, parameterisation with a stack of homogeneous layers
having irregular interfaces (Figure 15) may allow inversion with
the small number of station data. However, lateral variation of
S-wave velocity is not included in a homogeneous-layers model.
Therefore we use a combination of the tomographic-cell
(Figure 1a) and homogeneous-layer models (Figure 1), as can
be seen in Figure lc.

This soil model consists of subsurface layers over a basement
having a constant S-wave velocity, which is one of the unknown
parameters in the waveform inversion. The subsurface layers
above the basement are divided into few layers separated by
smooth interfaces. For example, the model in Figure 1¢ has three
subsurface layers. The layer structure of each interface is
described with basis functions by Aoi et al. (1995). Using
linear combination of a basis function ¢y (x) and a coefficient
Py, the interface depth d(x) at location x is written as

d(x) =Y prex(x), (3)
k

where L is the number of basis functions. A basis function is
defined as

) {1/2+1/2cos(n/A(xka)) Xpo1 <X <Xt
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where A and x; are constants specified in advance. Depth
parameters are defined for each interface of a multi-layered
model. The unknown parameters to be determined by the
inversion are the coefficients P; in equation 3 that specify the
interface shape. In order to model lateral variation of S-wave
velocity in subsurface layers, they are divided into blocks as can
be seen in Figure 1¢. The S-wave velocity in each block is also one
of the parameters in the inversion. In order to stabilise the
inversion we use smoothing of the S-wave velocity field in
each layer with a weighted three-point smoothing operation.
For example, the total number of unknown parameters for the
model in Figure 1cis 91 (10 x 3 for P and 20 x 3 + 1 for S-wave
velocities).

The parameterisation of the subsurface structure that we have
described can allow us to model soil layers with S-wave
variations, separated by geologically discontinuous interfaces.
We therefore assume that variations of S-wave velocities are only
small in the blocks that belong to the same layer in an inversion.
This can be implemented by making the search limits narrow, for
S-wave velocities in different blocks in a layer.

Definition of misfit

The misfit function to be minimised in the inversion is defined
using observed and theoretical traces. The misfit, £, is calculated
from
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where s°(7) and 5°(¢) are the observed and calculated waveforms of
SH waves. N is the number of stations along the surveying line. In
the following numerical experiments, we assume that source
wavelet is known before the inversion.

; (5)

Inversion algorithm

It is expected that the misfit function will have a complex shape.
An appropriate initial model is required in least-square-type
inversions, because of the local search characteristics.
However, we often have no previous knowledge of subsurface
structure, especially for shallow near-surface soils. We therefore
applied global search algorithms to minimise the misfit function
in this study.

Heuristic approaches are among the global search algorithms
used in various kinds of geophysical inversion, such as the
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(a) Tomographic blocks (b) Homogeneous layers (o) Model used in this study
with irregular interfaces

Fig. 1. Model parameterisation with (a) tomographic blocks, (b) homogeneous layers having irregular interfaces defined by summation of trigonometric

functions, and (c) combined model with blocks and interfaces, used in this study.
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Generic Algorithm (GA) and Simulated Annealing (SA) methods
(e.g. Sen et al., 1993). Since heuristic inversion methods often
require a significant number of forward calculations, heuristic
approaches are less often applied in inversions that require
relatively heavy forward computations. We however use the
hybrid heuristic method proposed by Yamanaka (2007),
because this method is capable of finding an optimal model
with less computational effort than required by conventional
heuristic algorithms.

The computational flow is shown in Figure 2. The main part of
the operation is based on the GA of Yamanaka and Ishida (1996),
with three genetic operations of crossover, selection, and
mutation. However, a generation-dependent probability of
choosing new models from current models (X) and offspring
models (Y') in the crossover operation is introduced in the hybrid
method. The difference, AE, between the misfits of the offspring
and current models is calculated by

AE = E(Y') — E(X). (6)

We principally select whichever of the parent model or the
offspring model has a smaller misfit. If the difference of the
two misfits is negative, the offspring model survives in the next
generation. However, even when AE is positive, there is
probability P that an offspring model with a large misfit will
still be selected in the next generation. P is defined as

P = exp(—4E/Ty), ()
where 7} is the ‘temperature’ variable at the k-th generation. The

temperature is high in the early stages of the computation and
becomes gradually lower with increasing generations. The rate of
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Fig. 2. Computational flow for hybrid heuristic inversion.

decrease of temperature is similar to that in the SA of Yamanaka
(2005).

As the temperature decreases, the probability of acceptance
works differently in the early and late stages of the search. In the
early stage, offspring models with large differences between
observed and calculated waveforms can frequently be selected
in the next generation, while such models find it hard to survive in
later iterations. Only offspring models with smaller misfits than
parent models can be chosen in the final stages of the calculation.
As is the case with the SA, it is expected that the algorithm can
search model space globally and locally because of the
generation-dependent acceptance probability. Notice that the
hybrid method with infinite temperature works in a similar
way to conventional GA. In this study, we also include the
elite selection rule of Yamanaka and Ishida (1996), and a real-
number coding of the parameters, in the hybrid method. The
genetic operations described above are repeated with decreasing
temperature until the number of the iterations reaches a given
value.

Model and synthetic data

The model used in the numerical experiment has two subsurface
layers over a basement with an S-wave velocity of 400 m/s as
shown in Figure 3. The thickness of the second subsurface layer is
1 m. This layer cannot be detected with conventional travel time
analysis of initial phases, because the layer is too thin, and no
refracted waves propagating in the top of the second layer arrive at
sites on the surface as initial phases. This kind of thin layer is
known as a blind layer in refraction seismology. In addition to the
blind layer, there is a slope in the central part of the interfaces in
this model.

Synthetic SH waves were calculated at the 10 stations located
on the surface of the model. The locations of the stations are
shown by triangles in Figure 3. We assumed an explosive point
source at the surface. The source time function is assumed to be
a Ricker wavelet. In the inversion the source wavelet is known.
The grid spacing of the finite-difference model is 0.1 m. Because
this grid spacing is sufficiently smaller than the minimum
requirements for stable computation, the accuracy of the later
phases in calculated wave field is enough to avoid contamination
by numerical dispersion. The computed waves are shown in
Figure 4. The synthetic data for inversion included theoretical
SH waves from forward modelling, and white noise with
amplitude 10% of the maximum value of each SH wave.

Inversion results

The heuristic waveform inversion is applied to the synthetic data.
The parameters in the inversion are 10 P, coefficients for each
interface, 30 S-wave velocities for blocks in each subsurface
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Fig. 3. 2D S-wave velocity model used in our numerical experiment. The
circle and triangles indicate the source and stations.
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Fig. 4. Synthetic waveform data calculated at the stations on the surface of
the model, used as observed data in our numerical experiment. Random noise
is included in the synthetic data.

layer, and one S-wave velocity for the basement. In all, 81
parameters are optimised. We first tune the parameters of
the heuristic algorithm, such as population size, probabilities
of crossover and mutation, and initial temperature. The
appropriate combination of parameters, decided from trial
runs of the program for several generations, were as follows:
population size 20; crossover probabilities 0.7; mutation
probability 0.01; and initial temperature 10. The limits of the
search spaces for the parameters are tabulated in Table 1.

The first 20 models were randomly generated using a random
number generator. Then, the 20 models are modified or replaced
through genetic operations, described above. The average and
minimum misfits among the 20 models at each generation are
shown in Figure 5 with the scheduled temperature decrease also
shown. The averaged misfit gradually decreases and almost
converges at the 60th generation. This indicates that the many
models in each generation are concentrated around the minimum
value by means ofthe hybrid method, acting to search locally. The
variations of the S-wave velocities of some of the blocks in the
first and second layers are shown in Figure 6. As expected from
the average misfit variations in Figure 5, the S-wave velocities are
converging to the true values after the 60th generation.

Table 1. Search limits in inversion.
Layer Vs (m/s) Py (m)
1 150-250 0.1-2.0
2 250-350 0.1-1.5
3 350-450
10 . 10
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Fig. 5. Variation of the minimum and average misfits at each generation

in waveform inversion of the synthetic data in Figure 3 as a function of
generation. Temperature decrease is also shown by a broken line.
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Fig. 6. Variation of S-wave velocities in the blocks in the first and second
layers at each generation in the waveform inversion of the synthetic data in
Figure 3.

Since many random numbers are used in heuristic search
methods, including in the hybrid method used in this study,
the variations in misfits and parameters described above are
more or less dependent on the random numbers used in each
execution of the program. We therefore conducted 10 inversions
with different initial values of the random number generator used
in the program. The minimum misfits derived at each generation
in the 10 inversions are shown in Figure 7 together with their
averaged values. It is noted that the minimum misfits in the figure
differed from each other in the 10 inversions, because of different
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Fig. 7. Variation of the minimum misfits (thin lines) at each generation in
10 inversions of the synthetic data in Figure 3, each with different initial values
ofthe random number generator used in the program. The average value of the
10 minimum misfits at each generation is also shown by a thick line.

0.07 T T T T

0.06

0.05

0.04

SD of misfit

0.03

0.02

001 L ! L L
0 20 40 60 80 100

Number of generations

Fig. 8. Variation in standard deviation of the minimum misfits at each
generation for 10 inversions of the synthetic data in Figure 3, with different
initial values of the random number generator.
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Fig. 9. S-wave velocity model from waveform inversion of the synthetic
data in Figure 3. The S-wave velocities and interface depth coefficients are
derived from averaging model parameters of 10 optimal models from 10
inversions with different initial values of the random number generator.
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Fig. 10. Distribution of standard deviation of the S-wave velocities of the
blocks for the 10 optimal models from 10 inversions with different initial
values of the random number generator.
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Fig. 11. Comparison of calculated SH waves for the inverted model in
Figure 9 with synthetic observed data.

details of the convergence with increasing generations. The
variation of the standard deviation of the minimum misfits is
shown in Figure 8. The standard deviation becomes small at the
50th generation indicating stability of the inverted results
regardless of the initial values of the random number generator.

The model parameters for the models with minimum misfits in
each of the 10 inversions are averaged to determine the final
inverted results. According to the idea of acceptable solutions
(Yamanaka, 2007) all of the models with misfits of less than a
threshold value are used in the averaging. We used a threshold 1.5
times larger than the minimum misfit among the all misfits
examined in the 10 inversions. The final model is depicted in
Figure 9. The blind layer and the slope of the interfaces have been
well reconstructed in the inverted model. The thickness to the

basement is less than in the true model near the source. This is due
to low sensitivity to the structure near the source, because the
observed motions are obtained at stations at a distance of more
than 10 m from the source. The standard deviations of the S-wave
velocities for the blocks in the acceptable solutions are shown in
Figure 10. Since most of the standard deviation for the S-wave
velocities is less than 1%, they have converged to the true values.
The synthetic seismograms for the inverted model are compared
with those for the synthetic observed data in Figure 11. The
waveforms for the inverted model are almost identical with
synthetic seismograms.

Conclusions

A hybrid heuristic waveform inversion method is proposed to
retrieve a 2D S-wave velocity profile from shallow seismic
refraction data. The subsurface structure is parameterised with
irregular-shaped interfaces between subsurface layers that
contain lateral S-wave velocity variations. The interface depth is
expressed by linear summation of mathematical basis functions.
The inhomogeneity in the S-wave velocity in each layeris modelled
by introducing blocks having different S-wave velocities. The
effectiveness of the method is demonstrated by inversion of
synthetic SH wave data, observed at the surface of a 2D shallow
soil model having a blind layer over the basement. The true model
could be well reconstructed by the waveform inversion.
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